Decision problems for Clark-congruential languages

Makoto Kanazawa1 \quad Tobias Kappé2

1Hosei University, Tokyo
2University College London

Work performed at the National Institute of Informatics, Tokyo.

ICGI, September 5, 2018
Suppose you know the following Japanese phrase:

猫は椅子で眠る The cat sleeps in the chair.
Suppose you know the following Japanese phrase:

猫は椅子で眠る \(\text{The cat sleeps in the chair.} \)

You also know that \textit{dog} is 犬. Now, you can form:

犬は椅子で眠る \(\text{The dog sleeps in the chair.} \)
This works because 猫 and 犬 are nouns.
This works because 猫 and 犬 are nouns.

Replacing nouns (probably) preserves grammatical correctness.
This works because 猫 and 犬 are nouns.

Replacing nouns (probably) preserves grammatical correctness.

猫 and 犬 are (almost) syntactically congruent:

\[u\text{猫}v \in \text{Japanese} \quad “ \iff ” \quad u\text{犬}v \in \text{Japanese} \]
Idea: use syntactic congruence to drive learning.1

1Clark 2010.
Introduction

Idea: use syntactic congruence to drive learning.¹

When (for all we know) \(u w v \in L \iff u x v \in L \), presume \(w \equiv_{L} x \).

¹Clark 2010.
Idea: use syntactic congruence to drive learning.1

When (for all we know) $uvw \in L \iff uxv \in L$, presume $w \equiv_L x$.

...but how to represent the language?

1Clark 2010.
Definition (Informal)

A grammar is *Clark-congruent* (CC) if words derived from the same symbol are syntactically congruent for its language.

A *language* is CC when there exists a CC grammar that describes it.
Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for \(L = \{a, b\}^+ \):

\[
G_1 : \quad S \rightarrow SS + a + b \\
G_2 : \quad S \rightarrow TS + a + b, \quad T \rightarrow a + b + \epsilon
\]
Definition (Informal)

A grammar is *Clark-congruential* (CC) if words derived from the same symbol are syntactically congruent for its language.

A *language* is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for $L = \{a, b\}^+$:

$$
G_1 : \quad S \rightarrow SS + a + b \\
G_2 : \quad S \rightarrow TS + a + b, \quad T \rightarrow a + b + \epsilon
$$

If S derives w and x in G_1, then $uwv \in L$ implies $uxv \in L$ — G_1 is CC.
Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for \(L = \{a, b\}^+ \):

\[
\begin{align*}
G_1 : & \quad S \rightarrow SS + a + b \\
G_2 : & \quad S \rightarrow TS + a + b, \quad T \rightarrow a + b + \epsilon
\end{align*}
\]

If \(S \) derives \(w \) and \(x \) in \(G_1 \), then \(uwv \in L \) implies \(uxv \in L \) — \(G_1 \) is CC.

However: \(T \) derives \(a \) and \(\epsilon \) in \(G_2 \). Now, \(a \in L \) but \(\epsilon \notin L \) — \(G_2 \) is not CC.
Let G be a CC grammar describing L.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”. That is, given a MAT for L, we can construct a CC grammar for L.
Introduction

Let G be a CC grammar describing L.

In the *minimally adequate teacher (MAT)* model, the learner can query:
- Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- Given a grammar H, does $L(G) = L(H)$ hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is "MAT-learnable". That is, given a MAT for L, we can construct a CC grammar for L.

Is this decidable?

Question

Let L be a CC language; is L "MAT-teachable"? That is, given a CC grammar for L, can we construct a MAT for L?
Let G be a CC grammar describing L.

In the *minimally adequate teacher (MAT)* model, the learner can query:

- Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- Given a grammar H, does $L(G) = L(H)$ hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”.

That is, given a MAT for L, we can construct a CC grammar for L.
Introduction

Let G be a CC grammar describing L.

In the \textit{minimally adequate teacher (MAT) model}, the learner can query:

- Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- Given a grammar H, does $L(G) = L(H)$ hold? If not, give a counterexample.

\textbf{Theorem (Clark 2010)}

\textit{Let L be a CC language; L is \textit{“MAT-learnable”}. That is, given a MAT for L, we can construct a CC grammar for L.}

\textbf{Question}

Let L be a CC language; is L \textit{“MAT-teachable”?} That is, given a CC grammar for L, can we construct a MAT for L?
Introduction

Let G be a CC grammar describing L.

In the *minimally adequate teacher (MAT)* model, the learner can query:

- Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- Given a grammar H, does $L(G) = L(H)$ hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”. That is, given a MAT for L, we can construct a CC grammar for $L.

Question

Let L be a CC language; is L “MAT-teachable”? That is, given a CC grammar for L, can we construct a MAT for $L?"
Equivalence problem

Given grammars G_1 and G_2, does $L(G_1) = L(G_2)$ hold?

Warning: Equivalence and congruence are undecidable for grammars in general.

Equivalence problem

Given grammars G_1 and G_2, does $L(G_1) = L(G_2)$ hold?

Congruence problem

Given a grammar G, and $w, x \in \Sigma^*$, are w and x syntactically congruent for $L(G)$?

Equivalence problem

Given grammars G_1 and G_2, does $L(G_1) = L(G_2)$ hold?

Congruence problem

Given a grammar G, and $w, x \in \Sigma^*$, are w and x syntactically congruent for $L(G)$?

Equivalence and congruence are undecidable for grammars in general.\(^2\)

Context

Equivalence problem
Given grammars G_1 and G_2, does $L(G_1) = L(G_2)$ hold?

Congruence problem
Given a grammar G, and $w, x \in \Sigma^*$, are w and x syntactically congruent for $L(G)$?

Recognition problem
Given a class of grammars C and a grammar G, does G belong to C?

Equivalence and congruence are undecidable for grammars in general.\(^2\)

CC languages
Context-free languages

CC languages
Context-free languages

CC languages

Pre-NTS languages
Context-free languages

CC languages

Pre-NTS languages

NTS languages
Context

<table>
<thead>
<tr>
<th></th>
<th>Congruence</th>
<th>Equivalence</th>
<th>Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTS</td>
<td>✓3</td>
<td>✓3</td>
<td>✓3,4</td>
</tr>
<tr>
<td>Pre-NTS</td>
<td>✓5</td>
<td>✓5</td>
<td>✗6</td>
</tr>
</tbody>
</table>

3 Sénizergues 1985.
5 Autebert and Boasson 1992.
<table>
<thead>
<tr>
<th></th>
<th>Congruence</th>
<th>Equivalence</th>
<th>Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTS</td>
<td>✓3</td>
<td>✓3</td>
<td>✓3,4</td>
</tr>
<tr>
<td>Pre-NTS</td>
<td>✓5</td>
<td>✓5</td>
<td>✗6</td>
</tr>
<tr>
<td>Clark-congruential</td>
<td>✓</td>
<td>✓</td>
<td>✠</td>
</tr>
</tbody>
</table>

3 Sénizergues 1985.
5 Autebert and Boasson 1992.
A congruence on Σ^* is an equivalence \equiv on Σ^* such that

\[
\begin{align*}
 w \equiv w' & \quad x \equiv x' \\
 \hline \\
 wx \equiv w'x'
\end{align*}
\]
A congruence on Σ^* is an equivalence \equiv on Σ^* such that

$$w \equiv w' \quad x \equiv x' \quad \Rightarrow \quad wx \equiv w'x'$$

Every language L induces a syntactic congruence \equiv_L:

$$\forall u, v \in \Sigma^*. \quad uwv \in L \iff uxv \in L\quad \Rightarrow \quad w \equiv_L x$$
A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

\[
\alpha B \gamma \in (\Sigma \cup V)^* \quad B \rightarrow \beta
\]

\[
\alpha B \gamma \Rightarrow_G \alpha \beta \gamma
\]
A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

$$\alpha B\gamma \in (\Sigma \cup V)^* \quad B \rightarrow \beta$$

$$\alpha B\gamma \Rightarrow_G \alpha\beta\gamma$$

$L(G, \alpha) = \{w \in \Sigma^* : \alpha \Rightarrow_g^* w\}$
A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

\[
\alpha B\gamma \in (\Sigma \cup V)^* \quad B \rightarrow \beta \\
\alpha B\gamma \Rightarrow_G \alpha\beta\gamma
\]

\[
L(G, \alpha) = \{ w \in \Sigma^* : \alpha \Rightarrow_G^* w \} \\
L(G) = \bigcup_{A \in I} L(G, A)
\]
A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

$$
\alpha B\gamma \in (\Sigma \cup V)^* \quad B \rightarrow \beta \\
\alpha B\gamma \Rightarrow_G \alpha\beta\gamma
$$

$$
L(G, \alpha) = \{ w \in \Sigma^* : \alpha \Rightarrow^*_G w \} \quad L(G) = \bigcup_{A \in I} L(G, A)
$$

Definition (More formal)

We say G is CC when for $A \in V$ and $w, x \in L(G, A)$, we have $w \equiv_{L(G)} x$.
We assume a total order \(\preceq \) on \(\Sigma \).
We assume a total order \preceq on Σ. This order extends to a total order on Σ^*:

- If w is shorter than x, then $w \preceq x$.
- If w and x are of equal length, compare lexicographically.
We assume a total order \preceq on Σ.

This order extends to a total order on Σ^*:

- If w is shorter than x, then $w \preceq x$.
- If w and x are of equal length, compare lexicographically.

For $\alpha \in (\Sigma \cup V)^*$ with $L(G, \alpha) \neq \emptyset$, write $\vartheta_G(\alpha)$ for the \preceq-minimum of $L(G, \alpha)$.
Let G be CC.

We mimic an earlier method to decide congruence.\(^7\)

\(^7\)Autebert and Boasson 1992.
Deciding congruence

Let G be CC. We mimic an earlier method to decide congruence.\(^7\)

Let \sim_G be the smallest rewriting relation such that

\[
A \rightarrow \alpha \quad L(G, \alpha) \neq \emptyset
\]

\[
\vartheta_G(\alpha) \sim_G \vartheta_G(A)
\]

\(^7\)Autebert and Boasson 1992.
Let G be CC.

We mimic an earlier method to decide congruence.7

Let \sim_G be the smallest rewriting relation such that

$$A \rightarrow \alpha \quad L(G, \alpha) \neq \emptyset$$

$$\vartheta_G(\alpha) \sim_G \vartheta_G(A)$$

Lemma

If $w \sim_G x$, *then* $w \equiv_{L(G)} x$.

Deciding congruence

Lemma

\[w \in L(G) \text{ if and only if } w \rightsquigarrow_G \emptyset_G(A) \text{ for some } A \in I. \]
Deciding congruence

Lemma

\(w \in L(G) \) if and only if \(w \sim_G \vartheta_G(A) \) for some \(A \in I \).

Example

Let \(G = \langle \{S\}, \{S \rightarrow SS + (S) + \epsilon\}, \{S\} \rangle \); this grammar is CC.
Deciding congruence

Lemma

\[w \in L(G) \text{ if and only if } w \xrightarrow{\sim} G \vartheta_G(A) \text{ for some } A \in I. \]

Example

Let \(G = \langle \{S\}, \{S \rightarrow SS + (S) + \epsilon\}, \{S\} \rangle \); this grammar is CC.

\(\sim \rho_G \) is generated by \(\epsilon \)

\[\epsilon = (())()() \]
Deciding congruence

Lemma

\(w \in L(G) \) if and only if \(w \sim_G \vartheta_G(A) \) for some \(A \in I \).

Example

Let \(G = \langle \{S\}, \{S \rightarrow SS + (S) + \epsilon\}, \{S\} \rangle \); this grammar is CC.

\(\sim_G \) is generated by \((\) \sim_G \epsilon \)

\[((\,) (\,) (\,) \sim_G (\,) (\,) (\,) \]
Deciding congruence

Lemma

\[w \in L(G) \text{ if and only if } w \leadsto_G \varnothing_G(A) \text{ for some } A \in I. \]

Example

Let \[G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle; \] this grammar is CC.

\(\leadsto_G \) is generated by \((\leadsto_G \epsilon) \)

\[\text{(()()()()) } \leadsto_G \text{ (())() } \leadsto_G \text{ ()() } \]
Deciding congruence

Lemma

\[w \in L(G) \text{ if and only if } w \rightsquigarrow_G \varnothing G(A) \text{ for some } A \in I. \]

Example

Let \(G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle \); this grammar is CC.

\(\rightsquigarrow_G \) is generated by \(() \rightsquigarrow_G \epsilon \)

\[
(()()) () \rightsquigarrow_G (()) () \rightsquigarrow_G () () \rightsquigarrow_G ()
\]
Lemma

\(w \in L(G) \) if and only if \(w \mapsto_G \vartheta_G(A) \) for some \(A \in I \).

Example

Let \(G = \langle \{S\}, \{S \rightarrow SS + (S) + \epsilon\}, \{S\} \rangle \); this grammar is CC.

\(\mapsto_G \) is generated by (\) \(\mapsto_G \epsilon \)

\[
(()) () \mapsto_G () () \mapsto_G () () \mapsto_G () \mapsto_G () \mapsto_G \epsilon = \vartheta_G(S)
\]
Deciding congruence

Lemma

\[w \in L(G) \text{ if and only if } w \stackrel{\varnothing}{\Rightarrow}_G \varnothing_G(A) \text{ for some } A \in I. \]

Example

Let \(G = \langle \{S\}, \{S \rightarrow SS + (S) + \epsilon\}, \{S\} \rangle \); this grammar is CC.

\(\Rightarrow_G \) is generated by () \(\Rightarrow_G \epsilon \)

\[
\begin{align*}
(()()() & \Rightarrow_G ()()() \Rightarrow_G ()() \Rightarrow_G () \Rightarrow_G \epsilon = \varnothing_G(S) \\
\end{align*}
\]

Therefore: \((()()()) \in L(G) \).
Deciding congruence

Lemma

\(w \in L(G) \) if and only if \(w \sim_G \vartheta_G(A) \) for some \(A \in I \).

Example

Let \(G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle \); this grammar is CC.

\(\sim_G \) is generated by \(() \sim_G \epsilon \)

\[
(()()) () \sim_G (()) () \sim_G () () \sim_G () \sim_G \epsilon = \vartheta_G(S)
\]

therefore: \((()()) () \in L(G) \).

From \(() () () \), we cannot reach \(\epsilon \); thus, \(() () () \not\in L(G) \).
Write \mathcal{I}_G for the set of words \emph{irreducible} by \sim_G.
Write \mathcal{I}_G for the set of words irreducible by \sim_G.

Lemma

*We can create a DPDA M_w such that $L(M_w) = \{u\#v : uvw \in L(G), u, v \in \mathcal{I}_G\}$.**
Deciding congruence

Write \mathcal{I}_G for the set of words \textit{irreducible} by \sim_G.

\textbf{Lemma}

\textit{We can create a DPDA M_w such that $L(M_w) = \{ u\#v : uvw \in L(G), \ u, v \in \mathcal{I}_G \}$.

\textbf{Lemma}

$L(M_w) = L(M_x)$ if and only if $w \equiv_{L(G)} x$.}
Deciding congruence

Write \mathcal{I}_G for the set of words irreducible by \sim_G.

Lemma

We can create a DPDA M_w such that $L(M_w) = \{u\#v : uwv \in L(G), u, v \in \mathcal{I}_G\}$.

Lemma

$L(M_w) = L(M_x)$ if and only if $w \equiv_{L(G)} x$.

Decidable (Sénizergues 1997)
Write \mathcal{I}_G for the set of words irreducible by \sim_G.

Lemma

We can create a DPDA M_w such that $L(M_w) = \{u\#v : uvw \in L(G), u, v \in \mathcal{I}_G\}$.

Lemma

$L(M_w) = L(M_x)$ if and only if $w \equiv_{L(G)} x$.

Theorem

Let $w, x \in \Sigma^*$. We can decide whether $w \equiv_{L(G)} x$.
Deciding equivalence

Analogous to a result about NTS grammars,\(^8\) we find

Lemma

Let \(G_1 = \langle V_1, \rightarrow_1, I_1 \rangle\) and \(G_2 = \langle V_2, \rightarrow_2, I_2 \rangle\) be CC.

Then \(L(G_1) = L(G_2)\) if and only if

(i) for all \(A \in I_1\), it holds that \(\vartheta_{G_1}(A) \in L(G_2)\) (and vice versa)

(ii) for all pairs \(u \leadsto_{G_1} v\) generating \(\leadsto_{G_1}\), also \(u \equiv_{L(G_2)} v\) (and vice versa)

\(^8\)Sénizergues 1985.
Deciding equivalence

Analogous to a result about NTS grammars,\(^8\) we find

Lemma

Let \(G_1 = \langle V_1, \rightarrow_1, I_1 \rangle\) and \(G_2 = \langle V_2, \rightarrow_2, I_2 \rangle\) be CC.

Then \(L(G_1) = L(G_2)\) if and only if

(i) for all \(A \in I_1\), it holds that \(\vartheta_{G_1}(A) \in L(G_2)\) (and vice versa)

(ii) for all pairs \(u \overset{\sim}{\rightarrow}_G v\) generating \(\sim_{G_1}\), also \(u \equiv_{L(G_2)} v\) (and vice versa)

\(^8\)Sénizergues 1985.
Deciding equivalence

Analogous to a result about NTS grammars, we find

Lemma

Let $G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$ and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC.

Then $L(G_1) = L(G_2)$ if and only if

(i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa)

(ii) for all pairs $u \xrightarrow{G_1} v$ generating \rightarrow_{G_1}, also $u \equiv_{L(G_2)} v$ (and vice versa)

8 Sénizergues 1985.
Deciding equivalence

Analogous to a result about NTS grammars, we find

Lemma

Let \(G_1 = \langle V_1, \rightarrow_1, I_1 \rangle \) and \(G_2 = \langle V_2, \rightarrow_2, I_2 \rangle \) be CC.

Then \(L(G_1) = L(G_2) \) if and only if

(i) for all \(A \in I_1 \), it holds that \(\varphi_{G_1}(A) \in L(G_2) \) (and vice versa)

(ii) for all pairs \(u \xrightarrow{G_1} v \) generating \(\xrightarrow{G_1} \), also \(u \equiv_{L(G_2)} v \) (and vice versa)

Finitely many

\(^8\)Sénizergues 1985.
Deciding equivalence

Analogous to a result about NTS grammars, we find

Lemma

Let $G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$ and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC.

Then $L(G_1) = L(G_2)$ if and only if

(i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa)

(ii) for all pairs $u \Rightarrow_G v$ generating \Rightarrow_{G_1}, also $u \equiv_{L(G_2)} v$ (and vice versa)

\[\text{Decidable} \]

\[^8 \text{Sénizergues 1985.} \]
Deciding equivalence

Analogous to a result about NTS grammars,\(^8\) we find

Lemma

Let \(G_1 = \langle V_1, \rightarrow_1, I_1 \rangle\) and \(G_2 = \langle V_2, \rightarrow_2, I_2 \rangle\) be CC.

Then \(L(G_1) = L(G_2)\) if and only if

(i) for all \(A \in I_1\), it holds that \(\vartheta_{G_1}(A) \in L(G_2)\) (and vice versa)

(ii) for all pairs \(u \xrightarrow{G_1} v\) generating \(\xrightarrow{G_1}\), also \(u \equiv_{L(G_2)} v\) (and vice versa)

Theorem

Let \(G_1\) and \(G_2\) be CC. We can decide whether \(L(G_1) = L(G_2)\).

\(^8\)Sénizergues 1985.
Deciding Clark-congruentiality

Given a congruence \equiv, we can extend it a congruence $\widehat{\equiv}$ on $(\Sigma \cup V)^*$, by stipulating

$$\vartheta_G(\alpha) \equiv \vartheta_G(\beta) \quad \frac{\alpha \widehat{\equiv} \beta}{\alpha \widehat{\equiv} \beta}$$
Deciding Clark-congruentiality

Given a congruence \equiv, we can extend it a congruence $\hat{\equiv}$ on $(\Sigma \cup V)^*$, by stipulating

$$\vartheta_G(\alpha) \equiv \vartheta_G(\beta) \quad \Rightarrow \quad \alpha \hat{\equiv} \beta$$

Lemma

Let \equiv be a congruence on Σ^*.

The following are equivalent:

(i) For all $A \in V$ and $w, x \in L(G, A)$, it holds that $w \equiv x$.

(ii) For all productions $A \rightarrow \alpha$, it holds that $A \hat{\equiv} \alpha$
Theorem

If $\equiv_{L(G)}$ is decidable, then we can decide whether G is CC.

Proof.

For $A \rightarrow \alpha$, check whether $A \overset{\equiv}{L(G)} \alpha$, i.e., whether $\vartheta_G(A) \equiv_{L(G)} \vartheta_G(\alpha)$. \qed
Deciding Clark-congruentiality

Theorem

If $\equiv_{L(G)}$ is decidable, then we can decide whether G is CC.

Proof.

For $A \rightarrow \alpha$, check whether $A \equiv_{L(G)} \alpha$, i.e., whether $\vartheta_G(A) \equiv_{L(G)} \vartheta_G(\alpha)$. □

Corollary

If $L(G)$ is a deterministic CFL, then it is decidable whether G is CC.
So, are CC languages “MAT-teachable”?
So, are CC languages “MAT-teachable”?

Yes... but there is a slight mismatch:

- (Clark 2010) assumes an *extended* MAT.
- That is, hypothesis grammars may not be CC!
So, are CC languages “MAT-teachable”?

Yes... but there is a slight mismatch:

- (Clark 2010) assumes an extended MAT.
- That is, hypothesis grammars may not be CC!

Two plausible fixes:

- Adjust learning algorithm to have CC grammars as hypotheses.
- Extend decision procedure, requiring only one grammar to be CC.
Many open questions:

- Are CC grammars more expressive than pre-NTS grammars?
Many open questions:

- Are CC grammars more expressive than pre-NTS grammars?
- Is the language of every CC grammar a DCFL?
Many open questions:

- Are CC grammars more expressive than pre-NTS grammars?
- Is the language of every CC grammar a DCFL?
- Is it decidable whether a given grammar is CC in general?
Lemma

Let G be CC, and let R be regular.

We can create a CC grammar G_R such that $L(G_R) = L(G) \cap R$.

Lemma
Let G be CC, and let R be regular.

We can create a CC grammar G_R such that $L(G_R) = L(G) \cap R$.

Lemma
Let $h : \Sigma^* \rightarrow \Sigma^*$ be a strictly alphabetic morphism, that is, $h(a) \in \Sigma$ for all $a \in \Sigma$.

We can create a CC grammar G^h such that $L(G^h) = h^{-1}(L(G))$.
For $a \in \Sigma$, add \bar{a} to Σ.

Let $h : \Sigma \rightarrow \Sigma$ be such that $h(a) = h(\bar{a}) = a$.

Create G^h such that $L(G^h) = h^{-1}(L(G))$.
For $a \in \Sigma$, add \bar{a} to Σ.

Let $h : \Sigma \rightarrow \Sigma$ be such that $h(a) = h(\bar{a}) = a$.

Create G^h such that $L(G^h) = h^{-1}(L(G))$.

Intuition

G^h is the same as G, but positions in every word can be “marked” by $\bar{\cdot}$.
Note that \mathcal{I}_G is a regular language.

Create G_w such that $L(G_w) = L(G^h) \cap \mathcal{I}_G \bar{w} \mathcal{I}_G$.

Now $G_w = \{u\bar{w}v : uwv \in L(G), \ u, v \in \mathcal{I}_G\}$.
Note that \mathcal{I}_G is a regular language.

Create G_w such that $L(G_w) = L(G^h) \cap \mathcal{I}_G \tilde{w} \mathcal{I}_G$.

Now $G_w = \{ u\tilde{w}v : uwv \in L(G), \ u, v \in \mathcal{I}_G \}$.

Intuition

$L(G_w)$ has words in $L(G)$ with w as a marked substring, with context reduced by \sim_G.
Lemma

Without loss of generality, every rule generating \sim_{G_w} overlaps and preserves \tilde{w}.
Lemma

Without loss of generality, every rule generating \(\rightsquigarrow G_w \) *overlaps and preserves* \(\bar{w} \).

We can now create a reduction *\(\rightsquigarrow G[w] \)* and a finite set *\(S_w \)* such that

- Every rule generating *\(\rightsquigarrow G[w] \)* contains and preserves *\(\# \).*
- \(\{ x \in \Sigma^* : x \rightsquigarrow G[w] \ y \in S_w \} = \{ u\#v : uwv \in L(G), u, v \in \mathcal{I}_G \} \)
Lemma

Without loss of generality, every rule generating \rightsquigarrow_{G_w} overlaps and preserves \bar{w}.

We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_w such that

- Every rule generating $\rightsquigarrow_{G[w]}$ contains and preserves $\#$.
- $\{x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w\} = \{u\#v : uwv \in L(G), u, v \in I_G\}$

The DPDA M_w acts by reading $u\#v$ up to $\#$, putting the input on the stack. Then:
Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating \(\rightsquigarrow_{G_w} \) *overlaps and preserves* \(\bar{w} \).

We can now create a reduction \(\rightsquigarrow_{G[w]} \) and a finite set \(S_w \) such that

- Every rule generating \(\rightsquigarrow_{G[w]} \) contains and preserves \(\# \).
- \(\{ x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w \} = \{ u\#v : uwv \in L(G), u, v \in I_G \} \)

The DPDA \(M_w \) acts by reading \(u\#v \) up to \(\# \), putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
Lemma

Without loss of generality, every rule generating \rightsquigarrow_{G_w} *overlaps and preserves* \bar{w}.

We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_w such that

- Every rule generating $\rightsquigarrow_{G[w]}$ contains and preserves $\#$.
- $\{x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w\} = \{u\#v : uwv \in L(G), u, v \in I_G\}$

The DPDA M_w acts by reading $u\#v$ up to $\#$, putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
- Whenever possible, reduce according to the rules from $\rightsquigarrow_{G[w]}$.
Lemma

Without loss of generality, every rule generating \rightsquigarrow_{G_w} overlaps and preserves \bar{w}.

We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_w such that

- Every rule generating $\rightsquigarrow_{G[w]}$ contains and preserves $\#$.
- $\{x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w\} = \{u\#v : uwv \in L(G), u, v \in I_G\}$

The DPDA M_w acts by reading $u\#v$ up to $\#$, putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
- Whenever possible, reduce according to the rules from $\rightsquigarrow_{G[w]}$.
- When the buffer resembles S_w and the input and stack are empty, accept.
Lemma

Without loss of generality, every rule generating \(\rightsquigarrow_{G_w} \) *overlaps and preserves* \(\bar{w} \).

We can now create a reduction \(\rightsquigarrow_{G[w]} \) *and a finite set* \(S_w \) *such that*

- Every rule generating \(\rightsquigarrow_{G[w]} \) contains and preserves \(\# \).
- \(\{ x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w \} = \{ uv : u\#v \in L(G), u, v \in I_G \} \)

The DPDA \(M_w \) acts by reading \(u\#v \) up to \(\# \), putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
- Whenever possible, reduce according to the rules from \(\rightsquigarrow_{G[w]} \).
- When the buffer resembles \(S_w \) and the input and stack are empty, accept.

With some analysis, we find that \(L(M_w) = \{ u\#v : u\#v \in L(G), u, v \in I_G \} \).