Leapfrog: Certified Equivalence for Protocol Parsers

Tobias Kappé

ILLC, University of Amsterdam

December 2nd, 2021
Joint work with folks at Cornell

Ryan Doenges

John Sarracino

Nate Foster

Greg Morrisett
Packet parsing

01000111011011110010
00000110001001101001
01100111001000000111
00100110010101100100
(and metadata)

header baby_ip {
 bit<8> src;
 bit<8> dst;
 bit<4> proto;
} (and metadata)

Success
Error
A horror story

parsed packet + metadata → control logic

output packet + metadata → flag set?

yes: recirculate

no: forward
Updating the parser

≈
State of the art

Verification frameworks for parsers exist:
>
▶ \textit{p4v} (Liu et al. 2018)
▶ Aquila (Tian et al. 2021)
▶ Neves et al. 2018

Great works... but room for improvement:
>
▶ Only functional properties are verified.
▶ No reusable certificate is produced.
▶ Rely on (trusted) verification to IR.
Contribution

- P4 automata: a syntax and semantics for protocol parsers.
- Algorithm to check (hyperproperties like) language equivalence.
- Implementation of algorithm in Coq + SMT solver.
- Proof of soundness (in Coq) and completeness (on paper).
Running Example

Parameters: states Q, headers H, header sizes $sz : H \to \mathbb{N}$.
\[c = \langle q_1 q_2, s[01\ldots0/mpls], \epsilon0\ldots0\epsilon \rangle \]
Challenge

Problem: $|\text{configurations}| \geq 10^{37}$ for reference MPLS parser.

Two-pronged solution:

- Symbolic representation + SMT solving.
- Up-to techniques to skip buffering.
Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq C \times C$.

Examples

- $\phi = q_1^<$ means “the left state is q_1”
- $\phi = 10^>$ means “the right buffer has 10 bits”
- mpl$\text{ls}^<$[24 : 24] = 1 means “the 24th bit of the mplls header in the left store is 1”

If $\llbracket \phi \rrbracket$ is a bisimulation, then ϕ is a symbolic bisimulation.
Equivalence checking — intuition

$\phi_0 = \text{accept}< \iff \text{accept}>$

$\phi_1 = \text{WP}(\phi_0)$

$\phi_2 = \text{WP}(\phi_1)$

$\phi_0 \land \phi_1 \land \phi_2$
Equivalence checking — algorithm

\[R \leftarrow \emptyset \]
\[T \leftarrow \{ \text{accept} \leftarrow \text{accept} \} \]

while \(T \neq \emptyset \) do
\[\text{pop } \psi \text{ from } T \]
\[\text{if not } \land R \models \psi \text{ then} \]
\[R \leftarrow R \cup \{ \psi \} \]
\[T \leftarrow T \cup \text{WP(} \psi \text{)} \]

if \(\phi \models \land R \) then
\[\text{return true} \]
else
\[\text{return false} \]

Loop termination: either
\[[\land R] \text{ shrinks; or} \]
\[[\land R] \text{ stays the same, } T \text{ shrinks.} \]

Loop invariants:
\[\text{If } c_1 \models [\land (R \cup T)] c_2, \text{ then} \]
\[c_1 \in F \iff c_2 \in F. \]
\[\text{If } c_1 \models [\land (R \cup T)] c_2, \text{ then} \]
\[\delta(c_1, b) \models \land R \iff \delta(c_2, b). \]
\[\text{If } \phi \text{ is a symbolic bisimulation,} \]
\[\text{then } \phi \models \land (R \cup T). \]

After the loop, \(\land R \) is the \textit{weakest} symbolic bisimulation.
Unreachable pairs: left buffer 0, right buffer 13?

Buffering pairs: left buffer 7, right buffer 7?
Optimizations — Correctness

Compute *bisimulation with leaps* instead.

\[\#(c_1, c_2) = \text{"no. of bits until next state change"} \]

\(R \) is a bisimulation with leaps if for all \(c_1 \ R c_2 \),

1. \(c_1 \in F \) if and only if \(c_2 \in F \)
2. \(\delta^*(c_1, w) \ R \delta^*(c_2, w) \) for all \(w \in \{0, 1\}^{\#(c_1, c_2)} \)

This is an up-to technique in disguise!

Must adjust implementation of WP.
Implementation — Side-stepping the termination checker
Algorithm state as proof rules:

\[
\phi \models \bigwedge R \quad \text{CLOSE} \quad \bigwedge R \models \psi \quad \text{pre_bisim} \phi \ R \ T \quad \text{SKIP} \\
\bigwedge R \not\models \psi \quad \text{pre_bisim} \phi \ (\psi :: T) \quad \text{EXTEND}
\]

Lemma (Soundness)

If \(\text{pre_bisim} \phi \ [] \ I\), then all pairs in \([\phi]\) are bisimilar.

Workflow: proof search for \(\text{pre_bisim}\), applying exactly one of these three rules.
Implementation — Talk to SMT solver
Implementation — Talk to SMT solver

In theory:

- If T is empty, apply Done.
- If $\bigwedge R \models \psi$, apply Skip.
- If $\bigwedge R \not\models \psi$, apply Extend.

In practice:

- Massage entailment into fully quantified boolean formula.
- Custom plugin pretty-prints to SMT-LIB 2.0, asks solver.
- If SAT, admit $\bigwedge R \models \psi$ and apply Skip.
- If UNSAT, admit $\bigwedge R \not\models \psi$ and apply Extend.
Implementation — Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):
 ▶ Encode goal to SMT, translate result to Coq proof.
 ▶ No support for fully quantified boolean formulas.
 ▶ Very little control over eventual SMT query.

```
interp (R |= phi)
< vm_compute.
forall (x: bitvec n) (y: bitvec m), ...
< hammer.
Tactic failure: cannot solve this goal.
```
Our approach:

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- No back-translation — have to trust solver (for now).

```lean
interp (R |= phi)
< apply compile_formula.
interp' (compile (R |= phi))
< cbn compile.
interp' (FForall (FExists (...)))
< verify_interp; admit.
```
Ceci n’est pas une diapo vide.
Implementation — Trusted computing base
Evaluation — Microbenchmarks

Automatically verifies common transformations:

- Speculative extraction / vectorization.
- Common prefix factorization
- General versus specialized TLV parsing.
- Early versus late filtering.

Extends to certain hyperproperties:

- Independence of initial header store.
- Correspondence between final stores.
Evaluation — Applicability study

parser-gen (Gibb et al. 2013) compiles parser to optimized implementation.

- Benchmarks: about 30 states each, *huge* store datastructure.
- Leapfrog can validate equivalence of input to output.

Match: \([ff, 00, 00, ff, 00, f0, 00, 00, 00, 00]\) \([04, 00, 00, 00, 00, 00, 00, 00, 00, 00]\) \([01, 00, 00, 00, 00, 00, 00, 00, 00, 00]\) \([ff, 00, 00, ff, 00, f0, 00, 00, 00, 00]\) \([ff, 00, 00, ff, 00, f0, 00, 00, 00, 00]\)

Next-State: 3/255 \(\text{Adv: } 14\) \(\text{Next-Lookup: } [0, 0, 0, 0]\)

Next-State: 4/255 \(\text{Adv: } 16\) \(\text{Next-Lookup: } [0, 2, 4, 6]\)

Next-State: 1/255 \(\text{Adv: } 6\) \(\text{Next-Lookup: } [0, 0, 0, 0]\)

Next-State: 1/255 \(\text{Adv: } 2\) \(\text{Next-Lookup: } [0, 0, 0, 0]\)
Lessons learned

- Finite automata can go the distance.
- Up-to techniques can be specialized.
- Programming in Coq is fun.

http://langsec.org/occupy/
References

M. C. Neves et al. (2018). “Verification of P4 programs in feasible time using assertions”. In: CoNEXT, pp. 73–85. DOI: 10.1145/3281411.3281421.