Completeness and the FMP for KA, revisited

Tobias Kappé

ICE-TCS Seminar Series, Reykjavik University
Some context

- Laws of Kleene algebra apply to many programming language semantics.
- This means we can use KA to reason about program semantics.
- What can we (not) prove using these laws?
- When is something not true only by the laws of KA?
Definition (Kleene algebra)

A *Kleene algebra* is a tuple \((K, +, \cdot, *, 0, 1)\) where for all \(x, y, z \in K\), we have:

\[
\begin{align*}
 x + x &= x & 1 + x \cdot x^* &= x^* & 1 + x^* \cdot x &= x^* \\
 x + y \cdot z &\leq z & y^* \cdot x &\leq z & x + y \cdot z &\leq y \\
 x \cdot z^* &\leq y
\end{align*}
\]

In addition to the “usual” laws for \(+\) and \(\cdot\) — associativity, distributivity, etc.

Here, \(x \leq y\) is a shorthand for \(x + y = y\).
Kleene algebra

Languages

Fix a (finite) set of letters Σ, and write Σ^* for the set of words over Σ.

Example (KA of languages)

The KA of languages over Σ is given by $(\mathcal{P}(\Sigma^*), \cup, \cdot, *, \emptyset, \{\epsilon\})$, where

- $\mathcal{P}(\Sigma^*)$ is the set of sets of words (languages);
- \cdot is pointwise concatenation, i.e., $L \cdot K = \{wx : w \in L, x \in K\}$;
- $*$ is the Kleene star, i.e., $L^* = \{w_1 \cdots w_n : w_1, \ldots, w_n \in L\}$;
- ϵ is the empty word.
Fix a (not necessarily finite) set of states S.

Example (KA of relations)

The KA of relations over S is given by $(\mathcal{P}(S \times S), \cup, \circ, *, \emptyset, \Delta)$, where

- $\mathcal{P}(S \times S)$ is the set of relations on S;
- \circ is relational composition.
- $*$ is the reflexive-transitive closure.
- Δ is the identity relation.
Claim

\textit{In every KA }K\textit{ and for all }u, v \in K, \textit{ it holds that } (u \cdot v)^* \cdot u \leq u \cdot (v \cdot u)^* \textit{.}

Proof. First, let’s recall the fixpoint rule:

\[
\frac{x + y \cdot z \leq z}{y^* \cdot x \leq z}
\]

It suffices to prove that \(u + u \cdot v \cdot u \cdot (v \cdot u)^* \leq u \cdot (v \cdot u)^* \); we derive:

\[
 u + u \cdot v \cdot u \cdot (v \cdot u)^* = u \cdot (1 + v \cdot u \cdot (v \cdot u)^*) = u \cdot (v \cdot u)^* \]

\[
\square
\]
Kleene algebra

Expressions

Definition
Exp is the set of regular expressions, generated by

\[e, f ::= 0 \mid 1 \mid a \in \Sigma \mid e + f \mid e \cdot f \mid e^* \]

Definition
Given a KA \((K, +, \cdot, *, 0, 1)\) and \(h : \Sigma \to K\), we define \(\hat{h} : \text{Exp} \to K\) by

\[
\begin{align*}
\hat{h}(0) &= 0 & \hat{h}(e + f) &= \hat{h}(e) + \hat{h}(f) \\
\hat{h}(1) &= 1 & \hat{h}(e \cdot f) &= \hat{h}(e) \cdot \hat{h}(f) \\
\hat{h}(a) &= h(a) & \hat{h}(e^*) &= \hat{h}(e)^*
\end{align*}
\]
Kleene algebra

Equations

Let \(e, f \in \text{Exp} \); we write \(K \models e = f \) when \(\hat{h}(e) = \hat{h}(f) \) for all \(h : \Sigma \rightarrow K \).

Examples

1. We showed just now that \(K \models (a \cdot b)^* \cdot a \leq a \cdot (b \cdot a)^* \) for all KAs \(K \).
2. \(\mathcal{P}(\Sigma^*) \models e = f \) when \(e \) and \(f \) denote the same regular language.
3. \(\mathcal{P}(S \times S) \models (a + 1)^* = a^* \) because \((R \cup \Delta)^* = R^* \) for all relations \(R \).
Let $e, f \in \text{Exp}$. We write . . .

- $\vdash e = f$ when $e = f$ follows from the axioms of KA.
- $\models e = f$ when $K \models e = f$ for every KA K.
- $\mathcal{F} \models e = f$ when $K \models e = f$ holds in every finite KA K.
- $\mathcal{R} \models e = f$ when $\mathcal{P}(S \times S) \models e = f$ for all S.
Kleene algebra

Model theory

\[\mathfrak{F} \models e = f \quad \text{FMP} \quad \models e = f \]

\[(Palka \ 2005) \]

\[\mathcal{P}(\Sigma^*) \models e = f \quad \text{Completeness} \]

\[(Kozen \ 1994) \]

\[\mathfrak{R} \models e = f \]

\[(Pratt \ 1980) \]
This talk

Palka’s proof of the FMP relies on Kozen’s completeness theorem.

... an independent proof of [the finite model property] would provide a quite different proof of the Kozen completeness theorem, based on purely logical tools. We defer this task to further research. (Palka 2005)

We found such a proof — with many ideas inspired by Palka.

Roadmap: Given \(e, f \in \text{Exp} \) we do the following:

1. Turn expressions \(e, f \) into a finite automaton \(A \)
2. Turn the finite automaton \(A \) into a finite monoid \(M \)
3. Turn the finite monoid \(M \) into a finite KA \(K \)
Expressions to automata

Definition
An automaton is a tuple \((Q, \rightarrow, I, F)\) where

- \(Q\) is a finite set of states; and
- \(\rightarrow \subseteq Q \times \Sigma \times Q\) is the transition relation; and
- \(I \subseteq Q\) is the set of initial states
- \(F \subseteq Q\) is the set of accepting states

We write \(q \xrightarrow{a} q'\) when \((q, a, q') \in \rightarrow\).
Expressions to automata

Definition
Let \((Q, \rightarrow, F)\) be an automaton. A solution is a function \(s : Q \rightarrow \text{Exp}\) such that

\[
F(q) + \sum_{q \xrightarrow{a} q'} a \cdot s(q') \leq s(q)
\]

\[F(q) = \begin{cases}
1 & q \in F \\
0 & q \notin F
\end{cases}\]

Example
For the automaton on the right, a solution satisfies

\[
\vdash 1 + a \cdot s(q_0) + b \cdot s(q_1) \leq s(q_0)
\]

\[
\vdash 0 + a \cdot s(q_1) + b \cdot s(q_0) \leq s(q_1)
\]

E.g., \(s(q_0) = (a + b \cdot a^* \cdot b)^*\) and \(s(q_1) = a^* \cdot b \cdot s(q_0)\).
Expressions to automata

Theorem (Kleene 1956; see also Conway 1971)

Every automaton admits a least solution (unique up to equivalence).

When A is an automaton, we write $A(q)$ for its least solution at q.

Lemma (c.f. Kleene 1956; Antimirov 1996; Kozen 2001; Jacobs 2006)

For every e, we can construct an automaton $A_e = (Q_e, \rightarrow_e, I_e, F_e)$ such that

\[\vdash e = \sum_{q \in I_e} A_e(q) \]
Automata to monoids

Let $A = (Q, \rightarrow, I, F)$ be an automaton.

Definition (Transition monoid; McNaughton and Papert 1968)

(M_A, \circ, Δ) is the monoid where $M_A = \{a_1 \circ \cdots \circ a_n : a_1, \ldots, a_n \in \Sigma\}$.

Example

The transition monoid for the automaton A on the right is carried by $M_A = \{\rightarrow_a, \rightarrow_b\}$, where

$\rightarrow_a = \{(q_0, q_0), (q_1, q_1)\} \quad \rightarrow_b = \{(q_0, q_1), (q_0, q_1)\}$
Automata to monoids

Definition (Transition automaton; McNaughton and Papert 1968)
Let $R \in M_A$. We write $A[R]$ for the transition automaton $(M_A, \rightarrow, \{\Delta\}, \{R\})$ where

$$P \xrightarrow{a} Q \iff P \circ a \xrightarrow{} = Q$$

Lemma (Solving transition automata)

$$\vdash A(q) = \sum_{qRq_f \in F} A[R](\Delta)$$
Lemma (Palka 2005)

Let \((M, \cdot, 1)\) be a monoid. Now \((\mathcal{P}(M), \cup, \otimes, \ast, \emptyset, \{1\})\) is a KA, where

\[
T \otimes U = \{ t \cdot u : t \in T \land u \in U \} \quad T^\ast = \{ t_1 \cdots t_n : t_1, \ldots, t_n \in T \}
\]

Lemma

Let \(A \) be an automaton, and let \(h : \Sigma \to \mathcal{P}(M_A) \) where \(h(a) = \{ \to a \} \). Now

\[
R \in \hat{h}(A(q)) \iff q R q_f \in F
\]
Putting it all together

In the sequel, fix \(e, f \in \text{Exp} \), and:

- Let \(A_{e,f} = (Q_{e,f}, \to_{e,f}, I_{e,f}, F_{e,f}) \) be the disjoint union of \(A_e \) and \(A_f \).
- Let \(M_{e,f} = (M_{A_{e,f}}, \circ, \Delta) \) be the monoid of \(A_{e,f} \).

Lemma (Normal form)

Let \(e, f \in \text{Exp} \) and \(h : \Sigma \to \mathcal{P}(M_{e,f}) \) be given by \(h(a) = \{ \overset{a}{\to}_{e,f} \} \). The following hold:

\[
\vdash e = \sum_{R \in \hat{h}(e)} A_{e,f}[R](\Delta) \quad \vdash f = \sum_{R \in \hat{h}(f)} A_{e,f}[R](\Delta)
\]
Putting it all together

Finite model property

Theorem (Finite model property)

If $\emptyset \models e = f$ then $\vdash e = f$.

Proof.

$\mathcal{P}(M_{e,f})$ is a finite KA; hence $\mathcal{P}(M_{e,f}) \models e = f$, i.e., $\hat{h}(e) = \hat{h}(f)$. But then:

$$\vdash e = \sum_{R \in \hat{h}(e)} A_{e,f}[R](\Delta) = \sum_{R \in \hat{h}(f)} A_{e,f}[R](\Delta) = f$$
Putting it all together
Completeness

Theorem (Completeness)
If $\mathcal{P}(\Sigma^*) \models e = f$ then $\vdash e = f$.

Proof.
Let $L : \Sigma \to \mathcal{P}(\Sigma^*)$ be given by $L(a) = \{a\}$.

We can show that $\hat{h}(e) = \{a_1^e,f \circ \cdots \circ a_n^e,f : a_1 \cdots a_n \in \hat{L}(e)\}$, and similarly for f.

If $\mathcal{P}(\Sigma^*) \models e = f$, then $\hat{L}(e) = \hat{L}(f)$, so $\hat{h}(e) = \hat{h}(f)$. The rest proceeds as before. \qed
Coq formalization

- All results formalized in the Coq proof assistant.

- Trusted base:
 - Calculus of Inductive Constructions.
 - Streicher’s *axiom K*.
 - Dependent functional extensionality.

- Some concepts are encoded differently; ideas remain the same.
Pomsets

Expressions in *concurrent KA* (CKA) are generated by

\[e, f ::= 0 \mid 1 \mid a \in \Sigma \mid e + f \mid e \cdot f \mid e \parallel f \mid e^* \mid e^\dagger \]

Definition (Bi-KA)

A *bi-KA* is a tuple \((K, +, \cdot, \parallel, *, \dagger, 0, 1)\) where

- \((K, +, \cdot, *, \dagger)\) and \((K, +, \parallel, 0, 1)\) are both KAs, and
- \(\parallel\) commutes, i.e., \(K \models e \parallel f = f \parallel e\).

A *weak bi-KA* is a bi-KA without the \(\dagger\).

Definition (Concurrent KA)

A *weak concurrent KA* is a (weak) bi-KA \(K\) satisfying

\[(e \parallel g) \cdot (f \parallel h) \leq (e \cdot f) \parallel (g \cdot h)\]
Example

The bi-KA of pomset languages over Σ is $(\mathcal{P}(\text{Pom}(\Sigma)), \cup, \cdot, \parallel, *, \dagger, \emptyset, \{1\})$, where

- $\text{Pom}(\Sigma)$ denotes the set of pomsets over Σ;
- 1 denotes the empty pomset;
- $L \cdot L' = \{ U \cdot V : U \in L, V \in L' \}$ and similarly for \parallel; and
- $L^* = \{1\} \cup L \cup L \cdot L \cup \cdots$ and $L^\dagger = \{1\} \cup L \cup L \parallel L \cup \cdots$.
Example

The **concurrent KA of pomset ideals** over Σ is $(\mathcal{I}(\Sigma), \cup, \cdot, \|, *, \dagger, \emptyset, \{1\})$, where

- $\mathcal{I}(\Sigma)$ contains the pomset languages downward-closed under \sqsubseteq; and
- the operators are as for bi-KA, but followed by downward closure under \sqsubseteq.
Pomsets

Theorem (Laurence and Struth 2014)
Let e and f be (weak) concurrent KA expressions.

Now $\mathcal{P}(\text{Pom}(\Sigma)) \models e = f$ if and only if $K \models e = f$ for all (weak) bi-KAs K.

Theorem (Laurence and Struth 2017; K., Brunet, Silva, et al. 2018)
Let e and f be weak concurrent KA expressions.

Now $\mathcal{I}(\Sigma) \models e = f$ if and only if $K \models e = f$ for all weak CKAs K.
Conjecture

Let e and f be concurrent KA expressions.

Now $\mathcal{I}(\Sigma) \models e = f$ if and only if $K \models e = f$ for all CKAs K

Current techniques do not work!
<speculation>
Pomsets

The following roadmap might work:

1. Translate CKA expressions to automata
 ⇒ Pomset automata (K., Brunet, Luttik, et al. 2019)
 ⇒ or HDAs (van Glabbeek 2004; Fahrenberg 2005; Fahrenberg et al. 2022)

2. Translate these automata to ordered bimonoids (Bloom and Ésik 1996)
 ⇒ see also (Lodaya and Weil 2000; van Heerdt et al. 2021)

3. Translate bimonoids to concurrent KAs.
 ⇒ essentially the same recipe?
Further open questions

▶ Can we apply these ideas to guarded Kleene algebra with tests?
▶ Does KA have a finite relational model property?
▶ Do these techniques extend to KA with hypotheses?
▶ Is there a representation theorem or duality for KA?

https://kap.pe/slides https://kap.pe/papers

References II

