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Some context

» Program semantics sometimes obey laws of Kleene algebra (KA).
» What can we (not) prove using these laws?

» When is something not true by just the laws of KA?
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Kleene algebra

Definition

Definition (Kleene algebra)
A Kleene algebra is a tuple (K, +,-,*,0,1) where
» (K,+,-,0,1) is an idempotent semiring

» The operator * additionally satisfies
14+ x-x"=x" x+y-z<z = y*x<z

Here, x < y is a shorthand for x +y = y.
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Kleene algebra

Expressions and equations

Definition
Fix an alphabet . Exp is the set of regular expressions, generated by

e,f :=0|1|aeX|e+f|e-f|e"
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Kleene algebra

Expressions and equations

Definition

Fix an alphabet . Exp is the set of regular expressions, generated by

Definition

Given a KA (K, +

Let e, f € Exp; we write K |= e = f when h(e) =
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e,f :==0]1|laceX|e+f|e-f|e"

,-*,0,1) and h: ¥ — K, we define h: Exp — K by

h(0) =0 h(e + f) = h(e) + h(f)
h(1)=1 h(e - f) = h(e) - h(f)
h(a) = h(a) h(e*) = h(e)’

h(f) for all h.



Kleene algebra

Languages

Fix a (finite) set of letters ¥.

Example (KA of languages)
The KA of languages over ¥ is given by (P(X*),U, -, *, 0, {€}), where
» P(X*) is the set of sets of words (languages);

» . is pointwise concatenation, i.e., L- K ={wx:w € L,x € K};
> *is the Kleene star, i.e., L* ={wy - -w,:wy,...,w, € L};

P ¢ is the empty word.
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Kleene algebra

Languages

Fix a (finite) set of letters ¥.

Example (KA of languages)
The KA of languages over ¥ is given by (P(X*),U, -, *, 0, {€}), where
» P(X*) is the set of sets of words (languages);

» . is pointwise concatenation, i.e., L- K ={wx:w € L,x € K};
> *is the Kleene star, i.e., L* ={wy - -w,:wy,...,w, € L};

P ¢ is the empty word.

Fact: P(X*) = e = f when e and f denote the same regular language.
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Kleene algebra

Relations

Fix a (not necessarily finite) set of states S.

Example (KA of relations)
The KA of relations over S is given by (P(S x S),U,0,*,0, A), where
» P(S x S) is the set of relations on S;

P o is relational composition.
P> * is the reflexive-transitive closure.

> A is the identity relation.
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Kleene algebra

Relations

Fix a (not necessarily finite) set of states S.

Example (KA of relations)
The KA of relations over S is given by (P(S x S),U,0,*,0, A), where
» P(S x S) is the set of relations on S;

P o is relational composition.
P> * is the reflexive-transitive closure.

> A is the identity relation.

Fact: P(S x S) = (a+1)" = a* because (RU A)* = R* for all relations R.
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Kleene algebra
Model theory

Let e, f € Exp. We write . ..

» e =1f when e = f follows from the axioms of KA.
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Kleene algebra
Model theory

Let e, f € Exp. We write . ..

» I e =f when e = f follows from the axioms of KA.
» =e=1f when K =e=f for every KA K.
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Kleene algebra
Model theory

Let e, f € Exp. We write . ..

» I e =f when e = f follows from the axioms of KA.

» =e=1f when K =e=f for every KA K.

> R=e=Ffwhen P(SxS)=e="f forall S.

» = e=f when K = e =" holds in every finite KA K.
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Kleene algebra
Model theory

(Palka 2005)
Sre=f Fe=f
FMP
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(Kozen 1994)

Completeness

P(E)e=f

(086T 13e4d)

REe="F



This paper

Palka's proof of the FMP relies on Kozen's completeness theorem.
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This paper

Palka's proof of the FMP relies on Kozen's completeness theorem.

... an independent proof of [the finite model property] would provide a quite
different proof of the Kozen completeness theorem, based on purely logical
tools. We defer this task to further research. (Palka 2005)

This paper gives that proof — with many ideas inspired by Palka.

Given e, f, we do the following:
1. Turn expressions e, f into a finite automaton A
2. Turn the finite automaton A into a finite monoid M
3. Turn the finite monoid M into a finite KA K
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Expressions to automata

Definition
An automaton is a tuple (Q,—, /, F) where
> @ is a finite set of states; and
> - C @ x X x Q is the transition relation; and
» | C Q is the set of initial states
> F C Q is the set of accepting states
We write ¢ = ¢’ when (g,a,¢) € —.
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Expressions to automata
Definition
Let (Q,—, F) be an automaton. A solution is a function s : @ — Exp such that

FF(q)+ ) a-s(q) <s(q)
a—q’

Here, F(q) =1 when g € F and F(q) = 0 otherwise.
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Expressions to automata
Definition

Let (Q,—, F) be an automaton. A solution is a function s : @ — Exp such that

FF(q)+ ) a-s(q) <s(q)
a—q’

Here, F(q) =1 when g € F and F(q) = 0 otherwise.

Example

For the automaton on the right, a solution satisfies
F1+a-s(qo)+b-s(q1) < s(qo)

F0+a-s(q1) +b-s(qo) < s(q1) - Q

E.g.,s(qo)=(a+Db-a*-b)" and s(q1) = a* - b-s(qo).
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Expressions to automata

Theorem (Kleene 1956; see also Conway 1971)

Every automaton admits a least solution (unique up to equivalence).
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Expressions to automata
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Theorem (Kleene 1956; see also Conway 1971)

Every automaton admits a least solution (unique up to equivalence).

When A is an automaton, we write A(q) for its least solution at g.

Lemma (c.f. Kleene 1956; Antimirov 1996; Kozen 2001; Jacobs 2006)

For every e, we can construct an automaton Ae = (Qe, —e, le, Fe) such that

Fe= ZAe(q)

q€le



Automata to monoids

Let A= (Q,—,/, F) be an automaton.

Definition (Transition monoid; McNaughton and Papert 1968)
(Ma,0,A) is a monoid, where My = {a—1> 0.0 M:ay,...,a, € X}
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Automata to monoids

Let A= (Q,—,/, F) be an automaton.

Definition (Transition monoid; McNaughton and Papert 1968)
(Ma,0,A) is a monoid, where My = {a—1> 0.0 M:ay,...,a, € X}

Let R € Ma. We write A[R] for the transition automaton (Ma, —., A, {R}) where
P3%,Q < Po3=Q

Lemma (Solving transition automata)

FA(@) = Y ARIA)

qRqreF
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Monoids to Kleene algebras

Lemma (Palka 2005)
Let (M,-,1) be a monoid. Now (P(M),U,®,%,0,{1}) is a KA, where

ToU={t-u:te TAue U} T®={t;- th:ty,...,tnh € T}
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Monoids to Kleene algebras

Lemma (Palka 2005)
Let (M,-,1) be a monoid. Now (P(M),U,®,®,0,{1}) is a KA, where

ToU={t-u:te TAue U} T®={t;- th:ty,...,tnh € T}
Lemma
Let A be an automaton, and let h: ¥ — P(My) where h(a) = {=}. Now

Reh(A(q) < qRqgreF
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Putting it all together

In the sequel, fix e, f € Exp, and:
> Let Acr = (Qef, —refslef, Fef) be the disjoint union of A and Ar.
> Let M = (Ma,,,o,A) be the monoid of A, r.
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Putting it all together

In the sequel, fix e, f € Exp, and:
> Let Acr = (Qef, —refslef, Fef) be the disjoint union of A and Ar.
> Let M = (Ma,,,o,A) be the monoid of A, r.

Lemma (Normal form)
Let e,f € Exp and h: £ — P(M. ) be given by h(a) = {Z¢}. The following hold:

Fe= Y AcflRI(D) Ff= Y AcflRI(D)

Reh(e) Reh(f)
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Putting it all together

Finite model property

Theorem (Finite model property)
If§l=e=1fthent-e="f.
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Putting it all together

Finite model property

Theorem (Finite model property)
If§l=e=1fthent-e="f.

Proof.
P(Mef) is a finite KA; hence P(M.¢) |= e = f, i.e., h(e) = h(f). But then:

Fe= Y AfRI(A)= ) AcflRI(A

Reh(e) Reh(f)
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Putting it all together

Completeness

Theorem (Completeness)
IfP(X*)=e="f thente=".
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Completeness

Theorem (Completeness)
IfP(X*) [ =e=f thente=f.

Proof.
Let L: X — P(X*) be given by L(a) = {a}.
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Putting it all together

Completeness

Theorem (Completeness)

IfP(X*) [ =e=f thente=f.

Proof.

Let L: X — P(X*) be given by L(a) = {a}.

We can show that h(e) = {Zscro0---0 2o r:ar---a, € [(e)}, and similarly for f.

~

If P(X*) = e = f, then L(e) = L(e), so h(e) = h(f). The rest proceeds as before. [
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Coq formalization

» All results formalized in the Coq proof assistant.
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Coq formalization

» All results formalized in the Coq proof assistant.

» Trusted base:

» Calculus of Inductive Constructions.
» Streicher's axiom K.
» Dependent functional extensionality.

» Some concepts are encoded differently; ideas remain the same.
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Open questions

» Can we apply these ideas to guarded Kleene algebra with tests?
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Open questions

» Can we apply these ideas to guarded Kleene algebra with tests?
» Does KA have a finite relational model property?
» Do these techniques extend to KA with hypotheses?

> |s there a representation theorem or duality for KA?
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