
Completeness and the FMP for KA, revisited

Tobias Kappé

RAMICS, April 4, 2023

Some context

▶ Program semantics sometimes obey laws of Kleene algebra (KA).

▶ What can we (not) prove using these laws?

▶ When is something not true by just the laws of KA?

1 / 20

Some context

▶ Program semantics sometimes obey laws of Kleene algebra (KA).

▶ What can we (not) prove using these laws?

▶ When is something not true by just the laws of KA?

1 / 20

Some context

▶ Program semantics sometimes obey laws of Kleene algebra (KA).

▶ What can we (not) prove using these laws?

▶ When is something not true by just the laws of KA?

1 / 20

Kleene algebra
Definition

Definition (Kleene algebra)

A Kleene algebra is a tuple (K ,+, ·, ∗, 0, 1) where
▶ (K ,+, ·, 0, 1) is an idempotent semiring

▶ The operator ∗ additionally satisfies

1 + x · x∗ = x∗ x + y · z ≤ z =⇒ y∗ · x ≤ z

Here, x ≤ y is a shorthand for x + y = y .

2 / 20

Kleene algebra
Expressions and equations

Definition
Fix an alphabet Σ. Exp is the set of regular expressions, generated by

e, f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e∗

Definition
Given a KA (K ,+, ·, ∗, 0, 1) and h : Σ → K , we define ĥ : Exp → K by

ĥ(0) = 0 ĥ(e + f) = ĥ(e) + ĥ(f)

ĥ(1) = 1 ĥ(e · f) = ĥ(e) · ĥ(f)

ĥ(a) = h(a) ĥ(e∗) = ĥ(e)
∗

Let e, f ∈ Exp; we write K |= e = f when ĥ(e) = ĥ(f) for all h.

3 / 20

Kleene algebra
Expressions and equations

Definition
Fix an alphabet Σ. Exp is the set of regular expressions, generated by

e, f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e∗

Definition
Given a KA (K ,+, ·, ∗, 0, 1) and h : Σ → K , we define ĥ : Exp → K by

ĥ(0) = 0 ĥ(e + f) = ĥ(e) + ĥ(f)

ĥ(1) = 1 ĥ(e · f) = ĥ(e) · ĥ(f)

ĥ(a) = h(a) ĥ(e∗) = ĥ(e)
∗

Let e, f ∈ Exp; we write K |= e = f when ĥ(e) = ĥ(f) for all h.

3 / 20

Kleene algebra
Languages

Fix a (finite) set of letters Σ.

Example (KA of languages)

The KA of languages over Σ is given by (P(Σ∗),∪, ·, ∗, ∅, {ϵ}), where
▶ P(Σ∗) is the set of sets of words (languages);

▶ · is pointwise concatenation, i.e., L · K = {wx : w ∈ L, x ∈ K};
▶ ∗ is the Kleene star, i.e., L∗ = {w1 · · ·wn : w1, . . . ,wn ∈ L};
▶ ϵ is the empty word.

Fact: P(Σ∗) |= e = f when e and f denote the same regular language.

4 / 20

Kleene algebra
Languages

Fix a (finite) set of letters Σ.

Example (KA of languages)

The KA of languages over Σ is given by (P(Σ∗),∪, ·, ∗, ∅, {ϵ}), where
▶ P(Σ∗) is the set of sets of words (languages);

▶ · is pointwise concatenation, i.e., L · K = {wx : w ∈ L, x ∈ K};
▶ ∗ is the Kleene star, i.e., L∗ = {w1 · · ·wn : w1, . . . ,wn ∈ L};
▶ ϵ is the empty word.

Fact: P(Σ∗) |= e = f when e and f denote the same regular language.

4 / 20

Kleene algebra
Relations

Fix a (not necessarily finite) set of states S .

Example (KA of relations)

The KA of relations over S is given by (P(S × S),∪, ◦, ∗, ∅,∆), where

▶ P(S × S) is the set of relations on S ;

▶ ◦ is relational composition.

▶ ∗ is the reflexive-transitive closure.

▶ ∆ is the identity relation.

Fact: P(S × S) |= (a+ 1)∗ = a∗ because (R ∪∆)∗ = R∗ for all relations R.

5 / 20

Kleene algebra
Relations

Fix a (not necessarily finite) set of states S .

Example (KA of relations)

The KA of relations over S is given by (P(S × S),∪, ◦, ∗, ∅,∆), where

▶ P(S × S) is the set of relations on S ;

▶ ◦ is relational composition.

▶ ∗ is the reflexive-transitive closure.

▶ ∆ is the identity relation.

Fact: P(S × S) |= (a+ 1)∗ = a∗ because (R ∪∆)∗ = R∗ for all relations R.

5 / 20

Kleene algebra
Model theory

Let e, f ∈ Exp. We write . . .

▶ ⊢ e = f when e = f follows from the axioms of KA.

▶ |= e = f when K |= e = f for every KA K .

▶ R |= e = f when P(S × S) |= e = f for all S .

▶ F |= e = f when K |= e = f holds in every finite KA K .

6 / 20

Kleene algebra
Model theory

Let e, f ∈ Exp. We write . . .

▶ ⊢ e = f when e = f follows from the axioms of KA.

▶ |= e = f when K |= e = f for every KA K .

▶ R |= e = f when P(S × S) |= e = f for all S .

▶ F |= e = f when K |= e = f holds in every finite KA K .

6 / 20

Kleene algebra
Model theory

Let e, f ∈ Exp. We write . . .

▶ ⊢ e = f when e = f follows from the axioms of KA.

▶ |= e = f when K |= e = f for every KA K .

▶ R |= e = f when P(S × S) |= e = f for all S .

▶ F |= e = f when K |= e = f holds in every finite KA K .

6 / 20

Kleene algebra
Model theory

Let e, f ∈ Exp. We write . . .

▶ ⊢ e = f when e = f follows from the axioms of KA.

▶ |= e = f when K |= e = f for every KA K .

▶ R |= e = f when P(S × S) |= e = f for all S .

▶ F |= e = f when K |= e = f holds in every finite KA K .

6 / 20

Kleene algebra
Model theory

⊢ e = f

|= e = f

P(Σ∗) |= e = f

R |= e = f

F |= e = f

(Kozen 1994)

Completeness

(P
ratt

1980)
(Palka 2005)

FMP

7 / 20

This paper

Palka’s proof of the FMP relies on Kozen’s completeness theorem.

. . . an independent proof of [the finite model property] would provide a quite
different proof of the Kozen completeness theorem, based on purely logical
tools. We defer this task to further research. (Palka 2005)

This paper gives that proof — with many ideas inspired by Palka.

Given e, f , we do the following:

1. Turn expressions e, f into a finite automaton A

2. Turn the finite automaton A into a finite monoid M

3. Turn the finite monoid M into a finite KA K

8 / 20

This paper

Palka’s proof of the FMP relies on Kozen’s completeness theorem.

. . . an independent proof of [the finite model property] would provide a quite
different proof of the Kozen completeness theorem, based on purely logical
tools. We defer this task to further research. (Palka 2005)

This paper gives that proof — with many ideas inspired by Palka.

Given e, f , we do the following:

1. Turn expressions e, f into a finite automaton A

2. Turn the finite automaton A into a finite monoid M

3. Turn the finite monoid M into a finite KA K

8 / 20

This paper

Palka’s proof of the FMP relies on Kozen’s completeness theorem.

. . . an independent proof of [the finite model property] would provide a quite
different proof of the Kozen completeness theorem, based on purely logical
tools. We defer this task to further research. (Palka 2005)

This paper gives that proof — with many ideas inspired by Palka.

Given e, f , we do the following:

1. Turn expressions e, f into a finite automaton A

2. Turn the finite automaton A into a finite monoid M

3. Turn the finite monoid M into a finite KA K

8 / 20

This paper

Palka’s proof of the FMP relies on Kozen’s completeness theorem.

. . . an independent proof of [the finite model property] would provide a quite
different proof of the Kozen completeness theorem, based on purely logical
tools. We defer this task to further research. (Palka 2005)

This paper gives that proof — with many ideas inspired by Palka.

Given e, f , we do the following:

1. Turn expressions e, f into a finite automaton A

2. Turn the finite automaton A into a finite monoid M

3. Turn the finite monoid M into a finite KA K

8 / 20

Expressions to automata

Definition
An automaton is a tuple (Q,→, I ,F) where

▶ Q is a finite set of states; and

▶ → ⊆ Q ×Σ×Q is the transition relation; and

▶ I ⊆ Q is the set of initial states

▶ F ⊆ Q is the set of accepting states

We write q
a−→ q′ when (q, a, q′) ∈ →.

q0 q1

b

a

a b

9 / 20

Expressions to automata

Definition
Let (Q,→,F) be an automaton. A solution is a function s : Q → Exp such that

⊢ F (q) +
∑
q

a−→q′

a · s(q′) ≤ s(q)

Here, F (q) = 1 when q ∈ F and F (q) = 0 otherwise.

Example

For the automaton on the right, a solution satisfies

⊢ 1 + a · s(q0) + b · s(q1) ≤ s(q0)

⊢ 0 + a · s(q1) + b · s(q0) ≤ s(q1)

E.g., s(q0) = (a+ b · a∗ · b)∗ and s(q1) = a∗ · b · s(q0).

q0 q1

b

b

a a

10 / 20

Expressions to automata

Definition
Let (Q,→,F) be an automaton. A solution is a function s : Q → Exp such that

⊢ F (q) +
∑
q

a−→q′

a · s(q′) ≤ s(q)

Here, F (q) = 1 when q ∈ F and F (q) = 0 otherwise.

Example

For the automaton on the right, a solution satisfies

⊢ 1 + a · s(q0) + b · s(q1) ≤ s(q0)

⊢ 0 + a · s(q1) + b · s(q0) ≤ s(q1)

E.g., s(q0) = (a+ b · a∗ · b)∗ and s(q1) = a∗ · b · s(q0).

q0 q1

b

b

a a

10 / 20

Expressions to automata

Theorem (Kleene 1956; see also Conway 1971)

Every automaton admits a least solution (unique up to equivalence).

When A is an automaton, we write A(q) for its least solution at q.

Lemma (c.f. Kleene 1956; Antimirov 1996; Kozen 2001; Jacobs 2006)

For every e, we can construct an automaton Ae = (Qe ,→e , Ie ,Fe) such that

⊢ e =
∑
q∈Ie

Ae(q)

11 / 20

Expressions to automata

Theorem (Kleene 1956; see also Conway 1971)

Every automaton admits a least solution (unique up to equivalence).

When A is an automaton, we write A(q) for its least solution at q.

Lemma (c.f. Kleene 1956; Antimirov 1996; Kozen 2001; Jacobs 2006)

For every e, we can construct an automaton Ae = (Qe ,→e , Ie ,Fe) such that

⊢ e =
∑
q∈Ie

Ae(q)

11 / 20

Expressions to automata

Theorem (Kleene 1956; see also Conway 1971)

Every automaton admits a least solution (unique up to equivalence).

When A is an automaton, we write A(q) for its least solution at q.

Lemma (c.f. Kleene 1956; Antimirov 1996; Kozen 2001; Jacobs 2006)

For every e, we can construct an automaton Ae = (Qe ,→e , Ie ,Fe) such that

⊢ e =
∑
q∈Ie

Ae(q)

11 / 20

Automata to monoids

Let A = (Q,→, I ,F) be an automaton.

Definition (Transition monoid; McNaughton and Papert 1968)

(MA, ◦,∆) is a monoid, where MA = { a1−→ ◦ · · · ◦ an−→: a1, . . . , an ∈ Σ}.

Let R ∈ MA. We write A[R] for the transition automaton (MA,→◦,∆, {R}) where

P
a−→◦ Q ⇐⇒ P ◦ a−→ = Q

Lemma (Solving transition automata)

⊢ A(q) =
∑

qRqf ∈F
A[R](∆)

12 / 20

Automata to monoids

Let A = (Q,→, I ,F) be an automaton.

Definition (Transition monoid; McNaughton and Papert 1968)

(MA, ◦,∆) is a monoid, where MA = { a1−→ ◦ · · · ◦ an−→: a1, . . . , an ∈ Σ}.

Let R ∈ MA. We write A[R] for the transition automaton (MA,→◦,∆, {R}) where

P
a−→◦ Q ⇐⇒ P ◦ a−→ = Q

Lemma (Solving transition automata)

⊢ A(q) =
∑

qRqf ∈F
A[R](∆)

12 / 20

Automata to monoids

Let A = (Q,→, I ,F) be an automaton.

Definition (Transition monoid; McNaughton and Papert 1968)

(MA, ◦,∆) is a monoid, where MA = { a1−→ ◦ · · · ◦ an−→: a1, . . . , an ∈ Σ}.

Let R ∈ MA. We write A[R] for the transition automaton (MA,→◦,∆, {R}) where

P
a−→◦ Q ⇐⇒ P ◦ a−→ = Q

Lemma (Solving transition automata)

⊢ A(q) =
∑

qRqf ∈F
A[R](∆)

12 / 20

Monoids to Kleene algebras

Lemma (Palka 2005)

Let (M, ·, 1) be a monoid. Now (P(M),∪,⊗,⊛, ∅, {1}) is a KA, where

T ⊗ U = {t · u : t ∈ T ∧ u ∈ U} T⊛ = {t1 · · · tn : t1, . . . , tn ∈ T}

Lemma
Let A be an automaton, and let h : Σ → P(MA) where h(a) = { a−→}. Now

R ∈ ĥ(A(q)) ⇐⇒ q R qf ∈ F

13 / 20

Monoids to Kleene algebras

Lemma (Palka 2005)

Let (M, ·, 1) be a monoid. Now (P(M),∪,⊗,⊛, ∅, {1}) is a KA, where

T ⊗ U = {t · u : t ∈ T ∧ u ∈ U} T⊛ = {t1 · · · tn : t1, . . . , tn ∈ T}

Lemma
Let A be an automaton, and let h : Σ → P(MA) where h(a) = { a−→}. Now

R ∈ ĥ(A(q)) ⇐⇒ q R qf ∈ F

13 / 20

Putting it all together

In the sequel, fix e, f ∈ Exp, and:

▶ Let Ae,f = (Qe,f ,→e,f , Ie,f ,Fe,f) be the disjoint union of Ae and Af .

▶ Let Me,f = (MAe,f
, ◦,∆) be the monoid of Ae,f .

Lemma (Normal form)

Let e, f ∈ Exp and h : Σ → P(Me,f) be given by h(a) = { a−→e,f }. The following hold:

⊢ e =
∑

R∈ĥ(e)

Ae,f [R](∆) ⊢ f =
∑

R∈ĥ(f)

Ae,f [R](∆)

14 / 20

Putting it all together

In the sequel, fix e, f ∈ Exp, and:

▶ Let Ae,f = (Qe,f ,→e,f , Ie,f ,Fe,f) be the disjoint union of Ae and Af .

▶ Let Me,f = (MAe,f
, ◦,∆) be the monoid of Ae,f .

Lemma (Normal form)

Let e, f ∈ Exp and h : Σ → P(Me,f) be given by h(a) = { a−→e,f }. The following hold:

⊢ e =
∑

R∈ĥ(e)

Ae,f [R](∆) ⊢ f =
∑

R∈ĥ(f)

Ae,f [R](∆)

14 / 20

Putting it all together
Finite model property

Theorem (Finite model property)

If F |= e = f then ⊢ e = f .

Proof.
P(Me,f) is a finite KA; hence P(Me,f) |= e = f , i.e., ĥ(e) = ĥ(f). But then:

⊢ e =
∑

R∈ĥ(e)

Ae,f [R](∆) =
∑

R∈ĥ(f)

Ae,f [R](∆) = f

15 / 20

Putting it all together
Finite model property

Theorem (Finite model property)

If F |= e = f then ⊢ e = f .

Proof.
P(Me,f) is a finite KA; hence P(Me,f) |= e = f , i.e., ĥ(e) = ĥ(f). But then:

⊢ e =
∑

R∈ĥ(e)

Ae,f [R](∆) =
∑

R∈ĥ(f)

Ae,f [R](∆) = f

15 / 20

Putting it all together
Completeness

Theorem (Completeness)

If P(Σ∗) |= e = f then ⊢ e = f .

Proof.
Let L : Σ → P(Σ∗) be given by L(a) = {a}.

We can show that ĥ(e) = { a1−→e,f ◦ · · · ◦
an−→e,f : a1 · · · an ∈ L̂(e)}, and similarly for f .

If P(Σ∗) |= e = f , then L̂(e) = L̂(e), so ĥ(e) = ĥ(f). The rest proceeds as before.

16 / 20

Putting it all together
Completeness

Theorem (Completeness)

If P(Σ∗) |= e = f then ⊢ e = f .

Proof.
Let L : Σ → P(Σ∗) be given by L(a) = {a}.

We can show that ĥ(e) = { a1−→e,f ◦ · · · ◦
an−→e,f : a1 · · · an ∈ L̂(e)}, and similarly for f .

If P(Σ∗) |= e = f , then L̂(e) = L̂(e), so ĥ(e) = ĥ(f). The rest proceeds as before.

16 / 20

Putting it all together
Completeness

Theorem (Completeness)

If P(Σ∗) |= e = f then ⊢ e = f .

Proof.
Let L : Σ → P(Σ∗) be given by L(a) = {a}.

We can show that ĥ(e) = { a1−→e,f ◦ · · · ◦
an−→e,f : a1 · · · an ∈ L̂(e)}, and similarly for f .

If P(Σ∗) |= e = f , then L̂(e) = L̂(e), so ĥ(e) = ĥ(f). The rest proceeds as before.

16 / 20

Putting it all together
Completeness

Theorem (Completeness)

If P(Σ∗) |= e = f then ⊢ e = f .

Proof.
Let L : Σ → P(Σ∗) be given by L(a) = {a}.

We can show that ĥ(e) = { a1−→e,f ◦ · · · ◦
an−→e,f : a1 · · · an ∈ L̂(e)}, and similarly for f .

If P(Σ∗) |= e = f , then L̂(e) = L̂(e), so ĥ(e) = ĥ(f). The rest proceeds as before.

16 / 20

Coq formalization

▶ All results formalized in the Coq proof assistant.

▶ Trusted base:
▶ Calculus of Inductive Constructions.
▶ Streicher’s axiom K.
▶ Dependent functional extensionality.

▶ Some concepts are encoded differently; ideas remain the same.

17 / 20

Coq formalization

▶ All results formalized in the Coq proof assistant.

▶ Trusted base:
▶ Calculus of Inductive Constructions.
▶ Streicher’s axiom K.
▶ Dependent functional extensionality.

▶ Some concepts are encoded differently; ideas remain the same.

17 / 20

Coq formalization

▶ All results formalized in the Coq proof assistant.

▶ Trusted base:
▶ Calculus of Inductive Constructions.
▶ Streicher’s axiom K.
▶ Dependent functional extensionality.

▶ Some concepts are encoded differently; ideas remain the same.

17 / 20

Open questions

▶ Can we apply these ideas to guarded Kleene algebra with tests?

▶ Does KA have a finite relational model property?

▶ Do these techniques extend to KA with hypotheses?

▶ Is there a representation theorem or duality for KA?

18 / 20

Open questions

▶ Can we apply these ideas to guarded Kleene algebra with tests?

▶ Does KA have a finite relational model property?

▶ Do these techniques extend to KA with hypotheses?

▶ Is there a representation theorem or duality for KA?

18 / 20

Open questions

▶ Can we apply these ideas to guarded Kleene algebra with tests?

▶ Does KA have a finite relational model property?

▶ Do these techniques extend to KA with hypotheses?

▶ Is there a representation theorem or duality for KA?

18 / 20

Open questions

▶ Can we apply these ideas to guarded Kleene algebra with tests?

▶ Does KA have a finite relational model property?

▶ Do these techniques extend to KA with hypotheses?

▶ Is there a representation theorem or duality for KA?

18 / 20

References I

Antimirov, Valentin M. (1996). “Partial Derivatives of Regular Expressions and
Finite Automaton Constructions”. In: Theor. Comput. Sci. 155.2, pp. 291–319.
doi: 10.1016/0304-3975(95)00182-4.
Conway, John Horton (1971). Regular Algebra and Finite Machines. Chapman and
Hall, Ltd., London.
Jacobs, Bart (2006). “A Bialgebraic Review of Deterministic Automata, Regular
Expressions and Languages”. In: Algebra, Meaning, and Computation, Essays
Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday,
pp. 375–404. doi: 10.1007/11780274_20.
Kleene, Stephen C. (1956). “Representation of Events in Nerve Nets and Finite
Automata”. In: Automata Studies, pp. 3–41.
Kozen, Dexter (1994). “A Completeness Theorem for Kleene Algebras and the
Algebra of Regular Events”. In: Inf. Comput. 110.2, pp. 366–390. doi:
10.1006/inco.1994.1037.

https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1007/11780274_20
https://doi.org/10.1006/inco.1994.1037

References II

Kozen, Dexter (2001). “Myhill-Nerode Relations on Automatic Systems and the
Completeness of Kleene Algebra”. In: STACS, pp. 27–38. doi:
10.1007/3-540-44693-1_3.
McNaughton, Robert and Seymour Papert (1968). “The syntactic monoid of a
regular event”. In: Algebraic Theory of Machines, Languages, and Semigroups,
pp. 297–312.
Palka, Ewa (2005). “On Finite Model Property of the Equational Theory of Kleene
Algebras”. In: Fundam. Informaticae 68.3, pp. 221–230. url: http:
//content.iospress.com/articles/fundamenta-informaticae/fi68-3-02.
Pratt, Vaughan R. (1980). “Dynamic Algebras and the Nature of Induction”. In:
STOC, pp. 22–28. doi: 10.1145/800141.804649.

https://doi.org/10.1007/3-540-44693-1_3
http://content.iospress.com/articles/fundamenta-informaticae/fi68-3-02
http://content.iospress.com/articles/fundamenta-informaticae/fi68-3-02
https://doi.org/10.1145/800141.804649

	References

