

Completeness and the FMP for KA, revisited

Tobias Kappé

Prague Workshop on Kleene Algebra and Many-Valued Logic

- Laws of Kleene algebra apply to many programming language semantics.
- ▶ This means we can use KA to reason about program semantics.
- ▶ What can we (not) prove using these laws?
- When is something not true only by the laws of KA?

Fix a (finite) set of *letters* Σ , and write Σ^* for the set of words over Σ .

Definition (KA of languages)

The KA of *languages over* Σ is given by $(\mathcal{P}(\Sigma^*), \cup, \cdot, *, \emptyset, \{\epsilon\})$, where

- $\mathcal{P}(\Sigma^*)$ is the set of sets of words (*languages*);
- ▶ is pointwise concatenation, i.e., $L \cdot K = \{wx : w \in L, x \in K\};$
- ▶ * is the Kleene star, i.e., $L^* = \{w_1 \cdots w_n : w_1, \ldots, w_n \in L\};$
- \blacktriangleright ϵ is the empty word.

Kleene algebra Relations

Fix a (not necessarily finite) set of states S.

Definition (KA of relations)

The KA of *relations over* S is given by $(\mathcal{R}(S), \cup, \circ, *, \emptyset, \Delta)$, where

- $\mathcal{R}(S)$ is the set of relations on S;
- ▶ is relational composition.
- * is the reflexive-transitive closure.
- Δ is the identity relation.

Kleene algebra Model theory

Let $e, f \in Exp$. We write . . .

•
$$K, h \models e = f$$
 when K is a KA and $h: \Sigma \to K$ with $\widehat{h}(e) = \widehat{h}(f)$.

• $K \models e = f$ when K is a KA and $K, h \models e = f$ for all h.

•
$$\models e = f$$
 when $K \models e = f$ for every KA K.

•
$$\mathfrak{F} \models e = f$$
 when $K \models e = f$ holds in every *finite* KA K.

•
$$\mathfrak{R} \models e = f$$
 when $\mathcal{R}(S) \models e = f$ for all S.

•
$$\mathfrak{FR} \models e = f$$
 when $\mathcal{R}(S) \models e = f$ for all finite S.

Kleene algebra Model theory

Kleene algebra Extending the model theory

Lemma If $\mathfrak{FR} \models e = f$, then $\models e = f$.

Proof sketch.

We show that $\mathfrak{FR} \models e = f$ implies $\mathcal{P}(\Sigma^*) \models e = f$. If $\mathcal{P}(\Sigma^*) \not\models e = f$, then (w.l.o.g.) there exists some word x in the language of e but not in f. Choose

$$S = \{w \in \Sigma^* : |w| \le |x|\}$$
 $h: \Sigma \to \mathcal{R}(S), \mathtt{a} \mapsto \{(w, w\mathtt{a}) : w\mathtt{a} \in S\}$

Now $\mathcal{R}(S)$, $h \not\models e = f$. The claim then follows by Kozen's theorem.

This talk

Palka's proof of the FMP relies on Kozen's completeness theorem.

... an independent proof of [the finite model property] would provide a quite different proof of the Kozen completeness theorem, based on purely logical tools. We defer this task to further research. (Palka 2005)

We found such a proof — with many ideas inspired by Palka.

Roadmap: Given $e, f \in Exp$ we do the following:

- 1. Turn expressions e, f into a finite automaton A
- 2. Turn the finite automaton A into a finite monoid M
- 3. Turn the finite monoid M into a finite KA K

Expressions to automata

Definition

An automaton is a tuple (Q, \rightarrow, I, F) where

- ▶ *Q* is a finite set of *states*; and
- \blacktriangleright \rightarrow \subseteq $Q \times \Sigma \times Q$ is the *transition relation*; and
- $I \subseteq Q$ is the set of *initial states*
- \blacktriangleright $F \subseteq Q$ is the set of *accepting states*

We write $q \stackrel{ ext{a}}{ o} q'$ when $(q, ext{a}, q') \in o$.

Lemma (c.f. Kleene 1956; Brzozowski 1964; Antimirov 1996) For every e, we can construct an automaton A_e that accepts the language of e.

Let $A = (Q, \rightarrow, I, F)$ be an automaton. Definition (Transition monoid; McNaughton and Papert 1968) (M_A, \circ, Δ) is the monoid where $M_A = \{ \stackrel{a_1}{\rightarrow} \circ \cdots \circ \stackrel{a_n}{\rightarrow} : a_1 \cdots a_n \in \Sigma^* \}$.

Monoids to Kleene algebras

Lemma (Palka 2005) Let $(M, \cdot, 1)$ be a monoid. Now $(\mathcal{P}(M), \cup, \otimes, {}^{\circledast}, \emptyset, \{1\})$ is a KA, where

$$T \otimes U = \{t \cdot u : t \in T \land u \in U\} \qquad T^{\circledast} = \{t_1 \cdots t_n : t_1, \dots, t_n \in T\}$$

Given an expression *e*, we can now obtain a *finite* KA $K_e = \mathcal{P}(M_{A_e})$.

Lemma

Let
$$e, f \in Exp$$
. If $K_e \models e = f$ and $K_f \models e = f$, then $\models e = f$.

Theorem (Finite model property) If $\mathfrak{F} \models e = f$ then $\models e = f$.

Solving automata

Definition

Let (Q, \rightarrow, F) be an automaton. A *solution* is a function $s: Q \rightarrow \mathsf{Exp}$ such that

$$F(q) + \sum_{\substack{q o q' \ q
eq f}} \mathtt{a} \cdot s(q') \leq s(q) \qquad \qquad F(q) = egin{cases} 1 & q \in F \ 0 & q
ot
ot F(q) \end{bmatrix}$$

Example

For the automaton on the right, a solution satisfies

$$Delta 1 + \mathtt{a} \cdot s(q_0) + \mathtt{b} \cdot s(q_1) \leq s(q_0)$$

 $Delta 0 + \mathtt{a} \cdot s(q_1) + \mathtt{b} \cdot s(q_0) \leq s(q_1)$

E.g., $s(q_0) = (a + b \cdot a^* \cdot b)^*$ and $s(q_1) = a^* \cdot b \cdot s(q_0)$.

Solving automata

Theorem (Kleene 1956; see also Conway 1971)

Every automaton admits a least solution (unique up to equivalence).

When A is an automaton, we write

- $\overline{A}(q)$ for the least solution to A at q
- ▶ $\lfloor A \rfloor$ for the sum of $\overline{A}(q)$ for $q \in I$

Lemma

If $e \in Exp$, then $\models \lfloor A_e \rfloor \leq e$.

Solving monoids

Definition (Transition automaton; McNaughton and Papert 1968) Let $R \in M_A$. We write A[R] for the *transition automaton* $(M_A, \rightarrow_\circ, \{\Delta\}, \{R\})$ where

$$P \stackrel{ extsf{a}}{ o}_{\circ} Q \iff P \circ \stackrel{ extsf{a}}{ o} = Q$$

Lemma (Solving transition automata)

Let A be an automaton, let $q \in Q$ and let $R \in M_A$ with $q \ R \ q_f \in F$. We have

$$\models \lfloor A[R] \rfloor \leq \overline{A}(q)$$

Solving Kleene algebras

Let
$$h_e:\Sigma
ightarrow {\mathcal K}_e$$
 be given by $h_e({ t a})={ t a\over
ightarrow}_e$

Lemma

Let $e \in \mathsf{Exp}$ and let $R \in h_e(e)$. Then $\models \overline{A_e[R]} \leq e$.

Lemma

Let $e, f \in Exp$. We have that

$$\models f \leq \sum_{R \in h_e(f)} \lfloor A_e[R] \rfloor$$

Proof sketch. By induction on *f*.

Proving the main lemma

Lemma

Let $e, f \in Exp$. If $K_e \models e = f$ and $K_f \models e = f$, then $\models e = f$.

Proof.

Since $K_e \models e = f$, we have that $h_e(e) = h_e(f)$; we can then derive

$$\models f \leq \sum_{R \in h_e(f)} \lfloor A_e[R]
floor = \sum_{R \in h_e(e)} \lfloor A_e[R]
floor \leq e$$

By a similar argument, $\models e \leq f$; the claim then follows.

Coq formalization

All results formalized in the Coq proof assistant.

- Trusted base:
 - Calculus of Inductive Constructions.
 - Streicher's axiom K.
 - Dependent functional extensionality.

Some concepts are encoded differently; ideas remain the same.

Expressions in concurrent KA (CKA) are generated by

$$e,f ::= 0 \mid 1 \mid a \in \Sigma \mid e+f \mid e \cdot f \mid e \parallel f \mid e^* \mid e^\dagger$$

Definition (Bi-KA)

A *bi-KA* is a tuple ($K, +, \cdot, \parallel, *, ^{\dagger}, 0, 1$) where

- $(K, +, \cdot, *)$ and $(K, +, \parallel, ^{\dagger})$ are both KAs, and
- \parallel commutes, i.e., $K \models e \parallel f = f \parallel e$.

A weak bi-KA is a bi-KA without the † .

Definition (Concurrent KA)

A (weak) concurrent KA is a (weak) bi-KA K satisfying

 $(e \parallel g) \cdot (f \parallel h) \leq (e \cdot f) \parallel (g \cdot h)$

Example

The *bi-KA of pomset languages* over Σ is $(\mathcal{P}(\mathsf{Pom}(\Sigma)), \cup, \cdot, \|, *, ^{\dagger}, \emptyset, \{1\})$, where

- $\mathsf{Pom}(\Sigma)$ denotes the set of pomsets over Σ ;
- ▶ 1 denotes the empty pomset;
- $L \cdot L' = \{U \cdot V : U \in L, V \in L'\}$ and similarly for \parallel ; and
- $\blacktriangleright L^* = \{1\} \cup L \cup L \cdot L \cup \cdots \text{ and } L^{\dagger} = \{1\} \cup L \cup L \parallel L \cup \cdots.$

Example

The concurrent KA of pomset ideals over Σ is $(\mathcal{I}(\Sigma), \cup, \cdot, \|, *, ^{\dagger}, \emptyset, \{1\})$, where

- ▶ $\mathcal{I}(\Sigma)$ contains the pomset languages downward-closed under \sqsubseteq ; and
- ▶ the operators are as for bi-KA, but followed by downward closure under ⊆.

Theorem (Laurence and Struth 2014) Let e and f be (weak) concurrent KA expressions. Now $\mathcal{P}(\text{Pom}(\Sigma)) \models e = f$ if and only if $K \models e = f$ for all (weak) bi-KAs K

Theorem (Laurence and Struth 2017; K., Brunet, Silva, et al. 2018) Let e and f be weak concurrent KA expressions.

Now $\mathcal{I}(\Sigma) \models e = f$ if and only if $K \models e = f$ for all weak CKAs K

Conjecture

Let e and f be concurrent KA expressions.

Now $\mathcal{I}(\Sigma) \models e = f$ if and only if $K \models e = f$ for all CKAs K

Current techniques do not work!

<speculation>

The following roadmap *might* work:

1. Translate CKA expressions to automata

 \Rightarrow Pomset automata (K., Brunet, Luttik, et al. 2019)

 \Rightarrow or HDAs (van Glabbeek 2004; Fahrenberg 2005; Fahrenberg et al. 2022)

2. Translate these automata to ordered bimonoids (Bloom and Ésik 1996)

 \Rightarrow see also (Lodaya and Weil 2000; van Heerdt et al. 2021)

3. Translate bimonoids to concurrent KAs.

 \Rightarrow essentially the same recipe?

</speculation>

Further open questions

- Can we apply these ideas to guarded Kleene algebra with tests?
- Does KA have a finite relational model property?
- Do these techniques extend to KA with hypotheses?
- Is there a representation theorem or duality for KA?

https://kap.pe/slides https://kap.pe/papers

References I

- Antimirov, Valentin M. (1996). "Partial Derivatives of Regular Expressions and Finite Automaton Constructions". In: *Theor. Comput. Sci.* 155.2, pp. 291–319. DOI: 10.1016/0304-3975(95)00182-4.
- Bloom, Stephen L. and Zoltán Ésik (1996). "Free Shuffle Algebras in Language Varieties". In: *Theor. Comput. Sci.* 163.1&2, pp. 55–98. DOI: 10.1016/0304-3975(95)00230-8.
- Brzozowski, Janusz A. (1964). "Derivatives of Regular Expressions". In: J. ACM 11.4, pp. 481–494. DOI: 10.1145/321239.321249.
- Conway, John Horton (1971). Regular Algebra and Finite Machines. Chapman and Hall, Ltd., London.
- Fahrenberg, Uli (2005). "A Category of Higher-Dimensional Automata". In: *FoSSaCS*, pp. 187–201. DOI: 10.1007/978-3-540-31982-5_12.
- Fahrenberg, Uli et al. (2022). "A Kleene Theorem for Higher-Dimensional Automata". In: CONCUR, 29:1–29:18. DOI: 10.4230/LIPIcs.CONCUR.2022.29.

References II

- Kappé, Tobias, Paul Brunet, Bas Luttik, et al. (2019). "On series-parallel pomset languages: Rationality, context-freeness and automata". In: J. Log. Algebr. Meth. Program. 103, pp. 130–153. DOI: 10.1016/j.jlamp.2018.12.001.
- Kappé, Tobias, Paul Brunet, Alexandra Silva, et al. (2018). "Concurrent Kleene Algebra: Free Model and Completeness". In: ESOP, pp. 856–882. DOI: 10.1007/978-3-319-89884-1_30.
- Kleene, Stephen C. (1956). "Representation of Events in Nerve Nets and Finite Automata". In: *Automata Studies*, pp. 3–41.
- Kozen, Dexter (1994). "A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events". In: Inf. Comput. 110.2, pp. 366–390. DOI: 10.1006/inco.1994.1037.
- Laurence, Michael R. and Georg Struth (2014). "Completeness Theorems for Bi-Kleene Algebras and Series-Parallel Rational Pomset Languages". In: RAMiCS, pp. 65–82. DOI: 10.1007/978–3–319–06251–8_5.

References III

- Laurence, Michael R. and Georg Struth (2017). Completeness Theorems for Pomset Languages and Concurrent Kleene Algebras. arXiv: 1705.05896.
- Lodaya, Kamal and Pascal Weil (2000). "Series-parallel languages and the bounded-width property". In: *Theor. Comp. Sci.* 237.1, pp. 347–380. DOI: 10.1016/S0304-3975(00)00031-1.
- McNaughton, Robert and Seymour Papert (1968). "The syntactic monoid of a regular event". In: Algebraic Theory of Machines, Languages, and Semigroups, pp. 297–312.
- Palka, Ewa (2005). "On Finite Model Property of the Equational Theory of Kleene Algebras". In: Fundam. Informaticae 68.3, pp. 221–230. URL: http:

//content.iospress.com/articles/fundamenta-informaticae/fi68-3-02.

Pratt, Vaughan R. (1980). "Dynamic Algebras and the Nature of Induction". In: STOC, pp. 22–28. DOI: 10.1145/800141.804649.

References IV

- van Glabbeek, Rob J. (2004). "On the Expressiveness of Higher Dimensional Automata: (Extended Abstract)". In: *EXPRESS*, pp. 5–34. DOI: 10.1016/j.entcs.2004.11.026.
- van Heerdt, Gerco et al. (2021). "Learning Pomset Automata". In: *FoSSaCS*, pp. 510–530. DOI: 10.1007/978-3-030-71995-1_26.