Funded by
the European Union

Algebras for Deterministic Computation

Are Inherently Incomplete

Universiteit

Leiden
The Netherlands

Discover the world at Leiden University

%l UNIVERSITY
“® OF AMSTERDAM

g‘ﬁg INSTITUTE FOR LOGIC,

KRS LANGUAGE AND COMPUTATION

Flow control

no if ('AQ)) {
Start A? B? while (BO) {
yes < yes |77 YO;
}

}
[Stop j‘— X Y XQO;

Discover the world at Leiden University

Expressivity
“if A, repeat X while A changes”

X
yes while (AQ0)) {

XO;

no yes
o> o> i 60) e
XO;

bool flag = true; start: if ('A()) return;
while (flag == A()) { X0O;
X0 if (A()) return;
flag = !'flag; XO;
} goto start;

We need non-local flow control for this program.
— see also (Knuth and Floyd 1971; Ashcroft and Manna 1972; Kozen and Tseng 2008; Schmid et al. 2021)

Discover the world at Leiden University

Expressivity

Just if-then-else and while-do are not enough; what do we to need to express everything?

» Single-level break helps, but is not enough (Kosaraju 1974; Kozen and Tseng 2008)
» Multi-level break lets us express everything (Kosaraju 1974; Kozen 2008)
» Having variables also suffices (Béhm and Jacopini 1966; Grathwohl et al. 2014)

» Obviously, having goto or tail recursion is also enough!

Each of these options has its own issues:

» break obscures loop conditions; m
» multi-level break even more so (and is rare); ‘
» goto can lead to “spaghetti code”; ‘
> e . . - 3
using variables makes control flow implicit;
. . . ©The Pokémon Company
» non-trivial tail recursion may scatter your code.

Discover the world at Leiden University

Main result

Are there local control-flow primitives
that can express all deterministic control flow?

(e.g., maybe if-then-else, while-do, and repeat-while-changes?)

No! *

" unless you allow infinitely many of them

Discover the world at Leiden University

Formalization

We need a language to denote control flow:

BA > b,c:=false |true |t €T |borc|band c|notbd
KATSe, fu=beBA|peX|e+ fle-f|e"

KAT can express traditional (deterministic) control flow:

if bthen e else f:=b-e+ (notb)- f while b do e := (b-e)” - (not b)
A (parametrized) relational semantics:

R[] : KAT = VS : Set, (T — 2%) = (& — 25%9) - 2575

test interp. T action interp. o

Discover the world at Leiden University

Automata model

to true

. ti|p1 ta|p2
t1 ANta —@

t1 Ata|p

Automata like these are exactly as expressive as KAT (Kozen 2003).

Discover the world at Leiden University

Determinism

Recall that we were interested in deterministic flow control.

Theorem
Let e € KAT. The following are equivalent:
1. if each o(p) is a partial function, then so is R[e]Z;

2. the automaton for e is deterministic.

We have already seen some deterministic expressions:

if bthen eelse f:=b-e+ (not b) - f while b do e := (b-e)" - (not b)

The notion of “determinism” for KAT expressions is robust!

Discover the world at Leiden University

Custom flow control

Here is an automaton for “repeat p while ¢ changes’:

o\

~_ —
X =

tlp
tlp
The corresponding (deterministic) KAT expression is

tp(tptp)” (t + tpt) + tp(tptp)” (t + tpt)

Discover the world at Leiden University 9/14

Custom flow control

We now have a new primitive for deterministic flow control:

repeat e while b changes := be(bebe)” (b + beb) + be(bebe)” (b + beb)

Theorem (cf. Kozen and Tseng 2008; Schmid et al. 2021)

There is no e built using if-then-else and while-do and sequential composition such that

R[e] = R[repeat p while ¢ changes]

See also (Knuth and Floyd 1971; Ashcroft and Manna 1972; Peterson et al. 1973; Kosaraju 1974).

Discover the world at Leiden University

A hierarchy

KAT: e-f, e+ f, e*

deterministic KAT

GKAT + repeat e while b changes + 777
GKAT + repeat e while b changes

GKAT: e- f, if b then e else f, while b do e

Discover the world at Leiden University

Main result

Theorem

For any deterministic fragment of KAT generated by finitely many operators (e.g., e - f,
if b then e else f, while b do e), there exist a deterministic KAT expression outside this fragment.

Discover the world at Leiden University

Proof idea

true | p1 true | p2
p1-p2 = @ *@ > g2 true ta | p1

"\
n\‘) —> true

if t then p; else ps =

(=)
O ¢

e‘/{@g —> true

oSt

while t do p =

Sl

Discover the world at Leiden University 13 /14

Further work

» The operators of GKAT are at most 1-dense. Is GKAT characterized by such automata?
» Is this result still true for extensions of KAT, like dKAT, or KAT with intersection?
» How does our hierarchy compare to Kosaraju's break hierarchy?

» |s there a different kind of composition that can incorporate, say, n-level breaks?

Discover the world at Leiden University

