
Algebras for Deterministic Computation
Are Inherently Incomplete

Balder ten Cate & Tobias Kappé POPL, January 23rd 2025

Discover the world at Leiden University 1 / 14

Flow control

Start A? B?

X YStop

no

yes yesno

if (!A()) {
while (B()) {

Y();
}

}
X();

Discover the world at Leiden University 2 / 14

Expressivity

Start A? A?Stop

X

X

yes

no

no yes

“if A, repeat X while A changes”

while (A()) {
X();
if (A()) break;
X();

}

bool flag = true;
while (flag == A()) {

X();
flag = !flag;

}

start: if (!A()) return;
X();
if (A()) return;
X();
goto start;

We need non-local flow control for this program.
— see also (Knuth and Floyd 1971; Ashcroft and Manna 1972; Kozen and Tseng 2008; Schmid et al. 2021)

Discover the world at Leiden University 3 / 14

Expressivity

Just if-then-else and while-do are not enough; what do we to need to express everything?

▶ Single-level break helps, but is not enough (Kosaraju 1974; Kozen and Tseng 2008)
▶ Multi-level break lets us express everything (Kosaraju 1974; Kozen 2008)
▶ Having variables also suffices (Böhm and Jacopini 1966; Grathwohl et al. 2014)
▶ Obviously, having goto or tail recursion is also enough!

Each of these options has its own issues:

▶ break obscures loop conditions;
▶ multi-level break even more so (and is rare);
▶ goto can lead to “spaghetti code”;
▶ using variables makes control flow implicit;
▶ non-trivial tail recursion may scatter your code. ©The Pokémon Company

Discover the world at Leiden University 4 / 14

Main result

Are there local control-flow primitives
that can express all deterministic control flow?

(e.g., maybe if-then-else, while-do, and repeat-while-changes?)

No! *
* unless you allow infinitely many of them

Discover the world at Leiden University 5 / 14

Formalization

We need a language to denote control flow:

BA ∋ b, c ::= false | true | t ∈ T | b or c | b and c | not b

KAT ∋ e, f ::= b ∈ BA | p ∈ Σ | e+ f | e · f | e∗

KAT can express traditional (deterministic) control flow:

if b then e else f := b · e+ (not b) · f while b do e := (b · e)∗ · (not b)

A (parametrized) relational semantics:

RJ−K : KAT → ∀S : Set, (T → 2S︸ ︷︷ ︸
test interp. τ

) → (Σ → 2S×S︸ ︷︷ ︸
action interp. σ

) → 2S×S

Discover the world at Leiden University 6 / 14

Automata model

q0 s1 s2
t1|p1

t1 ∧ t2|p1

t2|p2
t1 ∧ t2

t2 true

Automata like these are exactly as expressive as KAT (Kozen 2003).

Discover the world at Leiden University 7 / 14

Determinism

Recall that we were interested in deterministic flow control.

Theorem
Let e ∈ KAT. The following are equivalent:

1. if each σ(p) is a partial function, then so is RJeKστ ;
2. the automaton for e is deterministic.

We have already seen some deterministic expressions:

if b then e else f := b · e+ (not b) · f while b do e := (b · e)∗ · (not b)

The notion of “determinism” for KAT expressions is robust!

Discover the world at Leiden University 8 / 14

Custom flow control

Here is an automaton for “repeat p while t changes”:

q1 q2

t | p

t | p

t t

q0

t
| p

t |
p

The corresponding (deterministic) KAT expression is

tp(tptp)
∗
(t+ tpt) + tp(tptp)

∗
(t+ tpt)

Discover the world at Leiden University 9 / 14

Custom flow control

We now have a new primitive for deterministic flow control:

repeat e while b changes := be(bebe)
∗
(b+ beb) + be(bebe)

∗
(b+ beb)

Theorem (cf. Kozen and Tseng 2008; Schmid et al. 2021)
There is no e built using if-then-else and while-do and sequential composition such that

RJeK = RJrepeat p while t changesK
See also (Knuth and Floyd 1971; Ashcroft and Manna 1972; Peterson et al. 1973; Kosaraju 1974).

Discover the world at Leiden University 10 / 14

A hierarchy

KAT: e · f , e+ f , e∗

deterministic KAT

GKAT + repeat e while b changes + ???

GKAT + repeat e while b changes

GKAT: e · f , if b then e else f , while b do e

Discover the world at Leiden University 11 / 14

Main result

Theorem
For any deterministic fragment of KAT generated by finitely many operators (e.g., e · f ,
if b then e else f , while b do e), there exist a deterministic KAT expression outside this fragment.

Discover the world at Leiden University 12 / 14

Proof idea

p1 · p2 ≡ q0 q1 q2
true | p1 true | p2

true

if t then p1 else p2 ≡ q0

q1

q2

t | p
1

t | p
2

true

true

while t do p ≡
q0 t | p

t

q1 q2

t2 | p1

t1 | p2

t1 t2

q1 q2

q0

t1 t2

t0

t 0
| p

1t 1
| p

0

t
2 |

p
0

t
0 |

p
2

t1 | p2

t2 | p1

Discover the world at Leiden University 13 / 14

Further work

▶ The operators of GKAT are at most 1-dense. Is GKAT characterized by such automata?

▶ Is this result still true for extensions of KAT, like dKAT, or KAT with intersection?

▶ How does our hierarchy compare to Kosaraju’s break hierarchy?

▶ Is there a different kind of composition that can incorporate, say, n-level breaks?

Discover the world at Leiden University 14 / 14

