
Reasoning about Program Equivalence using (Prob)GKAT

Tobias Kappé

Open University of The Netherlands
Institute for Logic, Language and Computation, University of Amsterdam

OUrsi Seminar — October 22, 2022

Joint work with . . .

Alexandra Silva Dexter Kozen Justin Hsu Nate Foster

Steffen Smolka Todd Schmid Wojciech Rozowski

Motivation: comparing programs

if not a then

e;
else

f;

if a then

f;
else

e;

≡

Motivation: comparing programs

if a then

e;
while a do

e;

while a do

e;
≡

A more complicated equivalence

while a and b do

e;
while a do

f;
while a and b do

e;

while a do

if b then

e;
else

f;

≡

Initial questions

▶ What is the minimal set of axioms?

▶ Are those axioms complete w.r.t. some model?

▶ Can we decide axiomatic equivalence?

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e+a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e+a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b

a or b

| ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e+a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b | ab

a and b

| a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e+a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b | ab | a

not a

| 0 | 1

e, f ::= a | p ∈ Σ | ef | e+a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b | ab | a | 0

false

| 1

e, f ::= a | p ∈ Σ | ef | e+a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b | ab | a | 0 | 1

true

e, f ::= a | p ∈ Σ | ef | e+a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b | ab | a | 0 | 1

e, f ::= a

assert a

| p ∈ Σ | ef | e+a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e+a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef

e; f

| e+a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e+a f

if a then e else f

| e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a+ b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e+a f | e(a)

while a do e

Some example axioms

e+a e ≡ e

e+a f ≡ f+a e e+a f ≡ ae+a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e+a 0

≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Some example axioms

e+a e ≡ e e+a f ≡ f+a e

e+a f ≡ ae+a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e+a 0

≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Some example axioms

e+a e ≡ e e+a f ≡ f+a e e+a f ≡ ae+a f

aa ≡ 0 0e ≡ 0

if a then e else assert false = e+a 0

≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Some example axioms

e+a e ≡ e e+a f ≡ f+a e e+a f ≡ ae+a f aa ≡ 0

0e ≡ 0

if a then e else assert false = e+a 0

≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Some example axioms

e+a e ≡ e e+a f ≡ f+a e e+a f ≡ ae+a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e+a 0

≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Some example axioms

e+a e ≡ e e+a f ≡ f+a e e+a f ≡ ae+a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e+a 0

≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Some example axioms

e+a e ≡ e e+a f ≡ f+a e e+a f ≡ ae+a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e+a 0 ≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Some example axioms

e+a e ≡ e e+a f ≡ f+a e e+a f ≡ ae+a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e+a 0 ≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Some example axioms

e+a e ≡ e e+a f ≡ f+a e e+a f ≡ ae+a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e+a 0 ≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Some example axioms

e+a e ≡ e e+a f ≡ f+a e e+a f ≡ ae+a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e+a 0 ≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Some example axioms

e+a e ≡ e e+a f ≡ f+a e e+a f ≡ ae+a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e+a 0 ≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Some example axioms

e+a e ≡ e e+a f ≡ f+a e e+a f ≡ ae+a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e+a 0 ≡ ae+a 0

≡ 0 +a ae

≡ 0e+a ae

≡ aae+a ae

≡ ae+a ae

≡ ae = assert a; e

Guarded Kleene Algebra with Tests

e+a e ≡ e e+a f ≡ f+a e (e+a f) +b g ≡ e+ab (f+b g)

e+a f ≡ ae+a f eg+a fg ≡ (e+a f)g (ef)g ≡ e(fg) 0e ≡ 0

e0 ≡ 0 1e ≡ e e1 ≡ e e(a) ≡ ee(a) +a 1 (e+a 1)
(b) ≡ (ae)(b)

Guarded Kleene Algebra with Tests

Fixpoints: If fe+b g ≡ e and e is productive, then f(b)g ≡ e.

Unique solutions: affine systems of equations, i.e., of the form

e1,1 · x1 +a1,1 e1,2 · x2 +a1,2 · · · +a1,n b1 ≡ x1
...

. . .
...

en,1 · x1 +an,1 en,2 · x2 +an,2 · · · +an,n bn ≡ xn

have at most one solution (up to ≡) — provided the ei ,j are productive.

Guarded Kleene Algebra with Tests

Fixpoints: If fe+b g ≡ e and e is productive, then f(b)g ≡ e.

Unique solutions: affine systems of equations, i.e., of the form

e1,1 · x1 +a1,1 e1,2 · x2 +a1,2 · · · +a1,n b1 ≡ x1
...

. . .
...

en,1 · x1 +an,1 en,2 · x2 +an,2 · · · +an,n bn ≡ xn

have at most one solution (up to ≡) — provided the ei ,j are productive.

Guarded Kleene Algebra with Tests

Theorem (Smolka et al. (2020))

▶ ≡ is sound and complete w.r.t. a natural model.

▶ ≡ is decidable in nearly-linear time (for a fixed number of tests).

A more complicated equivalence

while a and b do

e;
while a do

f;
while a and b do

e;

e(ab) · (fe(ab))(a)

while a do

if b then

e;
else

f;

(e+b f)
(a)

≡

Followup questions

▶ What if we drop the axiom e0 ≡ 0?

▶ How expressive is this syntax?

▶ Can we simplify the last axiom?

Third question remains open!

Followup questions

▶ What if we drop the axiom e0 ≡ 0?

▶ How expressive is this syntax?

▶ Can we simplify the last axiom?

Third question remains open!

The axiom e0 ≡ 0

Intuition: “failing now is the same as failing later” . . .

. . . but what if the actions before failure matter?

The axiom e0 ≡ 0

Intuition: “failing now is the same as failing later” . . .

. . . but what if the actions before failure matter?

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end

= e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1

≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0

≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

Mission statement

Question
Let ≡0 be like ≡, but without relating e0 to 0.

Can we recover the same results for this finer equivalence?

Roadmap:

1. Find a model satisfying the axioms.

2. Prove soundness and completeness.

3. Decide equivalence within that model.

Mission statement

Question
Let ≡0 be like ≡, but without relating e0 to 0.

Can we recover the same results for this finer equivalence?

Roadmap:

1. Find a model satisfying the axioms.

2. Prove soundness and completeness.

3. Decide equivalence within that model.

Guarded trees — example

∅ | q{b} | p

∅ | q{b} | p

∅ | q...
{b}

{b}

{b}

Expressions to trees — base case

{b0, b1, ...}

1

− | p
a = {b0, b1, ...} 7→ p ∈ Σ 7→

Expressions to trees — Party hat diagrams

{b} | p ∅ | q {b} | r ∅ | s {b} | p ∅ | s

+b =

Expressions to trees — Party hat diagrams

{b} | p ∅ | q

· =

∅ | p
{b}

∅

∅ | q{b} | p

∅ | q

Expressions to trees — Party hat diagrams

{b}

()(b)

=

{b} | p

{b} | p

{b} | p

∅

{b} | p

∅

∅

...

A model in terms of guarded trees

Every expression e has an associated guarded tree JeK.

The early termination axiom does not hold: Je0K ̸= J0K.

Question (Soundness & Completeness)

Is e ≡0 f equivalent to JeK = JfK?

Question (Decidability)

Can we decide whether JeK = JfK?

A model in terms of guarded trees

Every expression e has an associated guarded tree JeK.

The early termination axiom does not hold: Je0K ̸= J0K.

Question (Soundness & Completeness)

Is e ≡0 f equivalent to JeK = JfK?

Question (Decidability)

Can we decide whether JeK = JfK?

A model in terms of guarded trees

Every expression e has an associated guarded tree JeK.

The early termination axiom does not hold: Je0K ̸= J0K.

Question (Soundness & Completeness)

Is e ≡0 f equivalent to JeK = JfK?

Question (Decidability)

Can we decide whether JeK = JfK?

A model in terms of guarded trees

Every expression e has an associated guarded tree JeK.

The early termination axiom does not hold: Je0K ̸= J0K.

Question (Soundness & Completeness)

Is e ≡0 f equivalent to JeK = JfK?

Question (Decidability)

Can we decide whether JeK = JfK?

Establishing completeness and decidability

From (Schmid et al. 2021):

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK (proof is coalgebraic!)

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly-linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Establishing completeness and decidability

From (Schmid et al. 2021):

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK (proof is coalgebraic!)

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly-linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Establishing completeness and decidability

From (Schmid et al. 2021):

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK (proof is coalgebraic!)

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly-linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Establishing completeness and decidability

From (Schmid et al. 2021):

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK (proof is coalgebraic!)

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly-linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Establishing completeness and decidability

From (Schmid et al. 2021):

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK (proof is coalgebraic!)

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly-linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Establishing completeness and decidability

From (Schmid et al. 2021):

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK (proof is coalgebraic!)

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly-linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Expressiveness

Question
Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that JeK = t?

Reason: our syntax does not have goto.
Only structured programs!

ℓ0 :if b then p; goto ℓ1 else accept

ℓ1 :if b then q; goto ℓ0 else accept

Not in general — for instance:

∅
{b}

| p

∅ | q

...

{b}

∅
{b}

| p

∅ | q

{b}

See also (Kozen and Tseng 2008).

Expressiveness

Question
Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that JeK = t?

Reason: our syntax does not have goto.
Only structured programs!

ℓ0 :if b then p; goto ℓ1 else accept

ℓ1 :if b then q; goto ℓ0 else accept

Not in general — for instance:

∅
{b}

| p

∅ | q

...

{b}

∅
{b}

| p

∅ | q

{b}

See also (Kozen and Tseng 2008).

Expressiveness

Question
Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that JeK = t?

Reason: our syntax does not have goto.
Only structured programs!

ℓ0 :if b then p; goto ℓ1 else accept

ℓ1 :if b then q; goto ℓ0 else accept

Not in general — for instance:

∅
{b}

| p

∅ | q

...

{b}

∅
{b}

| p

∅ | q

{b}

See also (Kozen and Tseng 2008).

Expressiveness

Question
Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that JeK = t?

Reason: our syntax does not have goto.
Only structured programs!

ℓ0 :if b then p; goto ℓ1 else accept

ℓ1 :if b then q; goto ℓ0 else accept

Not in general — for instance:

∅
{b}

| p

∅ | q

...

{b}

∅
{b}

| p

∅ | q

{b}

See also (Kozen and Tseng 2008).

Knuth-Yao algorithm

How to simulate using ?

while true do

if flip(0.5) then
if flip(0.5) then

return 1 // heads-heads

else
return 2 // heads-tails

else

if flip(0.5) then
return 3 // tails-heads

else
skip // tails-tails

x1start

x2 x3

T
H

T

H T H

Knuth-Yao algorithm

How to simulate using ?

while true do

if flip(0.5) then
if flip(0.5) then

return 1 // heads-heads

else
return 2 // heads-tails

else

if flip(0.5) then
return 3 // tails-heads

else
skip // tails-tails

x1start

x2 x3

T
H

T

H T H

Correctness of Knuth-Yao in ProbGKAT

while true do

if flip(0.5) then
if flip(0.5) then

return 1 // heads-heads

else
return 2 // heads-tails

else

if flip(0.5) then
return 3 // tails-heads

else
skip // tails-tails

≡
?

if flip(1/3) then
return 1

else

if flip(0.5) then
return 2

else
return 3

((r1 ⊕ 1
2
r2)⊕ 1

2
(r3 ⊕ 1

2
1))(1)

r1 ⊕ 1
3
(r2 ⊕ 1

2
r3)

Operational model

Automata with the transition function of the type
Q × At → Dω({✓,✗}+ V + Act× Q)

q0

◦
b

◦
b̄

q1
p, 0.4

r, 0.6

q, 0.4

r, 0.6

◦
b, b̄

✓
1

(p+b q)⊕0.4 r

▶ Notion of equivalence: bisimulation
associated with the type functor

▶ Can be decided in O(n2 log(n))
using a generic minimization
algorithm (Wißmann et al, 2020)

Operational model

Automata with the transition function of the type
Q × At → Dω({✓,✗}+ V + Act× Q)

q0

◦
b

◦
b̄

q1
p, 0.4

r, 0.6

q, 0.4

r, 0.6

◦
b, b̄

✓
1

(p+b q)⊕0.4 r

▶ Notion of equivalence: bisimulation
associated with the type functor

▶ Can be decided in O(n2 log(n))
using a generic minimization
algorithm (Wißmann et al, 2020)

Operational model

Automata with the transition function of the type
Q × At → Dω({✓,✗}+ V + Act× Q)

q0

◦
b

◦
b̄

q1
p, 0.4

r, 0.6

q, 0.4

r, 0.6

◦
b, b̄

✓
1

(p+b q)⊕0.4 r

▶ Notion of equivalence: bisimulation
associated with the type functor

▶ Can be decided in O(n2 log(n))
using a generic minimization
algorithm (Wißmann et al, 2020)

Overview

▶ GKAT describes general equivalences of programs.

▶ It admits a complete axiomatization and is decidable.

▶ There is a model for the theory without e0 ≡ 0.

▶ Soundness and completeness can be recovered.

▶ Lack of GOTO means not every tree is expressible.

▶ A probabilistic extension is in the works.

https://kap.pe/slides https://kap.pe/papers

https://kap.pe/slides
https://kap.pe/papers

Bonus — What is “nearly-linear”?

Nearly-linear complexity is O(α(n) · n), where α is the inverse Ackermann function.

Fun fact: α(n) ≤ 5 for most numbers you can think of:

▶ Grains of sand in the Sahara.

▶ The number of DNA base pairs on earth.

▶ Number of protons in the observable universe.

See also (Tarjan 1975).

Bonus — Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

if a then e else f end 7→ a · e+ a · f

while a do e end 7→ (a · e)∗ · a

Known results:

▶ There is a “nice” set of axioms for KAT.

▶ Soundness & completeness for a straightforward model.

▶ Equivalence according to these axioms is decidable.

Bonus — Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

if a then e else f end 7→ a · e+ a · f

while a do e end 7→ (a · e)∗ · a

Known results:

▶ There is a “nice” set of axioms for KAT.

▶ Soundness & completeness for a straightforward model.

▶ Equivalence according to these axioms is decidable.

Bonus — Reduction to KAT

Equivalence in KAT is PSPACE-complete (Cohen, Kozen, and Smith 1996).

But for practical inputs, good algorithms scale well — e.g., (Foster et al. 2015):

Bonus — Reduction to KAT

Equivalence in KAT is PSPACE-complete (Cohen, Kozen, and Smith 1996).

But for practical inputs, good algorithms scale well — e.g., (Foster et al. 2015):

References

Ernie Cohen, Dexter Kozen, and Frederick Smith (July 1996). The Complexity of Kleene Algebra with
Tests. Tech. rep. TR96-1598. Cornell University. handle: 1813/7253.

Nate Foster et al. (2015). “A Coalgebraic Decision Procedure for NetKAT”. In: POPL, pp. 343–355. doi:
10.1145/2676726.2677011.

Dexter Kozen and Wei-Lung (Dustin) Tseng (2008). “The Böhm-Jacopini Theorem is False,
Propositionally”. In: MPC, pp. 177–192. doi: 10.1007/978-3-540-70594-9_11.

Konstantinos Mamouras (2017). “Equational Theories of Abnormal Termination Based on Kleene
Algebra”. In: FOSSACS. Vol. 10203. Lecture Notes in Computer Science, pp. 88–105. doi:
10.1007/978-3-662-54458-7_6.

Todd Schmid et al. (2021). “Guarded Kleene Algebra with Tests: Coequations, Coinduction, and
Completeness”. In: ICALP, 142:1–142:14. doi: 10.4230/LIPIcs.ICALP.2021.142.

Steffen Smolka et al. (Jan. 2020). “Guarded Kleene Algebra with Tests: Verification of Uninterpreted
Programs in Nearly Linear Time”. In: POPL. doi: 10.1145/3371129.

Robert Endre Tarjan (1975). “Efficiency of a Good But Not Linear Set Union Algorithm”. In: 22.2,
pp. 215–225. doi: 10.1145/321879.321884.

1813/7253
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1007/978-3-540-70594-9_11
https://doi.org/10.1007/978-3-662-54458-7_6
https://doi.org/10.4230/LIPIcs.ICALP.2021.142
https://doi.org/10.1145/3371129
https://doi.org/10.1145/321879.321884

	References

