Moving the EOS namespace to persistent memory

Tobias Kappé (IT-DSS-DT)
tkappe@cern.ch

Supervised by
Elvin Alin Sindrilaru
EOS

- ...provides reliable and fast data storage.
- ...stores measurements and processed data.
- ...is used by all LHC experiments.
- ...contains roughly 32PB.
- ...has a namespace (100GB) kept in RAM.
Problem

- Booting into memory from disk is slow.
- This limits availability of the service.
Non-volatile RAM

- Simulated by DIMM RAM with a battery
- More sophisticated technologies incoming
- Boot speed could benefit from this.
 - No disk reads to restore changelog.
 - Consistent representation restored quicker.
- Mnemosyne toolchain provided by DSI
- EOS used as a ‘testbed’ for further use
Non-volatile RAM

Persistency is a ‘vertical’ property:

- Transactional updates for consistency.
- Persistent memory should not point to non-persistent memory.
- It transcends some API boundaries.
My contribution

- Hashtable suitable for transactional use
- Instrumentation to benchmark and validate
- First integration into EOS codebase
Hashtable performance

PersistentHashtable scales and can match google::dense_hash_map!
Hashtable performance

PersistentHashtable scales and can match google::dense_hash_map!
Hashtable memory usage

- google::dense_hash_map
- google::sparse_hash_map
- std::map
- PersistentHashtable

PersistentHashtable has more memory overhead (due to the AVL tree).

August 26, 2015 Moving the EOS namespace to persistent memory
Hashtable memory usage

PersistentHashtable has more memory overhead (due to the AVL tree).
Future work

- Mnemosyne needs upgrade to newer gcc/ICC.
- More transactional data structures, for e.g.:
 - `std::string`
 - `std::vector`
- Which data should be kept persistent?
 - Move those over to persistent memory.
- Which transient data can be quickly restored?