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Prelude

▶ The main theorems in this talk are not new, but the proofs are.

▶ Even if the contents are technical, the techniques are elementary.

▶ I learned most constructions as an undergraduate, here in Leiden.
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Motivation

▶ Laws of Kleene algebra (KA) model equivalence of regular expressions.

¬ Salomaa 1966; Conway 1971; Boffa 1990; Krob 1990; Kozen 1994

▶ They are also useful when reasoning about programming languages.

¬ Kozen and Patron 2000; Anderson et al. 2014; Smolka et al. 2015

▶ When is something true only by the laws of KA?

▶ How can we concisely show that something is not provable in KA?
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Kleene algebra
Definition

Definition (Kleene algebra; c.f. Kozen 1994)

A Kleene algebra is a tuple (K ,+, ·, ∗, 0, 1) where

(1) The “usual” laws for + and · hold (associativity, distributivity, etc. . . )

(2) For all x , y , z ∈ K , the following are true:

x + x = x 1 + x · x∗ = x∗ 1 + x∗ · x = x∗

x + y · z ≤ z

y∗ · x ≤ z

x + y · z ≤ y

x · z∗ ≤ y

Here, x ≤ y is a shorthand for x + y = y .
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Kleene algebra
Languages

Fix a (finite) set of letters Σ, and write Σ∗ for the set of words over Σ.

Example (KA of languages)

The KA of languages over Σ is given by (P(Σ∗),∪, ·, ∗, ∅, {ϵ}), where
▶ P(Σ∗) is the set of sets of words (languages);

▶ · is pointwise concatenation, i.e., L · K = {wx : w ∈ L, x ∈ K};
▶ ∗ is the Kleene star, i.e., L∗ = {w1 · · ·wn : w1, . . . ,wn ∈ L};
▶ ϵ is the empty word.
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Kleene algebra
Relations

Fix a (not necessarily finite) set of states S .

Example (KA of relations)

The KA of relations over S is given by (R(S),∪, ◦, ∗, ∅,∆), where

▶ R(S) is the set of relations on S ;

▶ ◦ is relational composition.

▶ ∗ is the reflexive-transitive closure.

▶ ∆ is the identity relation.
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Kleene algebra
Reasoning example

Claim
In every KA K and for all u, v ∈ K, it holds that (u · v)∗ · u ≤ u · (v · u)∗.

Proof. First, let’s recall the fixpoint rule:

x + y · z ≤ z

y∗ · x ≤ z

It suffices to prove that u + u · v · u · (v · u)∗ ≤ u · (v · u)∗; we derive:

u + u · v · u · (v · u)∗ = u · (1 + v · u · (v · u)∗) = u · (v · u)∗
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Kleene algebra
Expressions

Definition
Exp is the set of regular expressions, generated by

e, f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e∗

Definition
Given a KA (K ,+, ·, ∗, 0, 1) and h : Σ → K , we define ĥ : Exp → K by

ĥ(0) = 0 ĥ(a) = h(a) ĥ(e · f ) = ĥ(e) · ĥ(f )

ĥ(1) = 1 ĥ(e + f ) = ĥ(e) + ĥ(f ) ĥ(e∗) = ĥ(e)
∗

Example

If ℓ : Σ → P(Σ∗) where ℓ(a) = {a}, then ℓ̂(e) is the regular language denoted by e.
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Kleene algebra
Model theory

Let e, f ∈ Exp. We write . . .

▶ K , h |= e = f when K is a KA and h : Σ → K with ĥ(e) = ĥ(f ).

▶ K |= e = f when K is a KA and K , h |= e = f for all h.

▶ |= e = f when K |= e = f for every KA K .

▶ F |= e = f when K |= e = f holds in every finite KA K .

▶ R |= e = f when R(S) |= e = f for all S .
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Kleene algebra
Model theory

|= e = f

P(Σ∗) |= e = f

(Kozen 1994)

R |= e = f

(Pratt 1980)

F |= e = f

(Palka 2005)
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Main result
In a nutshell

Palka’s proof relies on Kozen’s completeness theorem.

She writes:

. . . an independent proof of [the finite model property] would provide a quite
different proof of the Kozen completeness theorem, based on purely logical
tools. We defer this task to further research. (Palka 2005)

We found such a proof — with many ideas inspired by Palka.
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Main result
A roadmap

Need to show: if F |= e = f , then |= e = f .

Given e, f ∈ Exp we do the following:

1. Turn expressions e into a finite automaton Ae

2. Convert the finite automaton Ae into a finite monoid Me

3. Translate the finite monoid Me into a finite KA Ke

4. Prove something about interpretations inside Ke

5. Apply the premise that |= e = f
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Expressions to automata

Definition
An automaton is a tuple A = (Q,→, I ,F ) where

▶ Q is a finite set of states; and

▶ → ⊆ Q × Σ× Q is the transition relation;

▶ I ⊆ Q is the set of initial states

▶ F ⊆ Q is the set of accepting states

We write q
a−→ q′ when (q, a, q′) ∈ →.

q0 q1

b

a

a b

The language of q ∈ Q is LA(q) = {a1 · · · an ∈ Σ∗ : q
a1−→ ◦ · · · ◦ an−→ q′ ∈ F}

The language of A is given by
⋃

q∈I LA(q).
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Expressions to automata

Lemma (c.f. Kleene 1956; Brzozowski 1964; Antimirov 1996)

For every e, we can construct an automaton Ae that accepts the language of e.
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Automata to monoids

Let A = (Q,→, I ,F ) be an automaton.

Definition (Transition monoid; McNaughton and Papert 1968)

(MA, ◦,∆) is the monoid where MA = { a1−→ ◦ · · · ◦ an−→ : a1 · · · an ∈ Σ∗}.
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Monoids to Kleene algebras

Lemma (Palka 2005)

Let (M, ·, 1) be a monoid. Now (P(M),∪,⊗,⊛, ∅, {1}) is a KA, where

T ⊗ U = {t · u : t ∈ T ∧ u ∈ U} T⊛ = {t1 · · · tn : t1, . . . , tn ∈ T}
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Putting it all together

Given an expression e, we can now obtain a finite KA Ke = P(MAe ).

Lemma
Let e, f ∈ Exp. If Ke |= e = f and Kf |= e = f , then |= e = f .

Theorem (Finite model property)

If F |= e = f then |= e = f .
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Peeling the onion
Solving automata

Definition
Let (Q,→, I ,F ) be an automaton. A solution is a function s : Q → Exp such that

|= F (q) +
∑
q

a−→q′

a · s(q′) ≤ s(q) F (q) =

{
1 q ∈ F

0 q ̸∈ F

17 / 30



Peeling the onion
Solving automata

Example

For the automaton on the right, a solution satisfies

|= 1 + a · s(q0) + b · s(q1) ≤ s(q0)

|= 0 + a · s(q1) + b · s(q0) ≤ s(q1)
q0 q1

b

b

a a

18 / 30



Peeling the onion
Solving automata

Example (Continued)

We start with the second condition:

0 + a · s(q1) + b · s(q0) ≤ s(q1)

We can rewrite this as
a · s(q1) + b · s(q0) ≤ s(q1)

which by the fixpoint rule implies

a∗ · b · s(q0) ≤ s(q1)

19 / 30
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Peeling the onion
Solving automata

Example (Continued)

Now we look at the second condition

1 + a · s(q0) + b · s(q1) ≤ s(q0)

Substituting a∗ · b · s(q0) ≤ s(q1) we get

1 + a · s(q0) + b · a∗ · b · s(q0) ≤ s(q0)

which rewrites to
1 + (a+ b · a∗ · b) · s(q0) ≤ s(q0)

By the fixpoint rule
(a+ b · a∗ · b)∗ ≤ s(q0)
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Peeling the onion
Solving automata

Example (Continued)

We now have two lower bounds:

(a+ b · a∗ · b)∗ ≤ s(q0)

a∗ · b · (a+ b · a∗ · b)∗ ≤ s(q1)

It turns these are also solutions to A — thus we found the least solution.
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Peeling the onion
Solving automata

Theorem (Kleene 1956; see also Conway 1971)

Every automaton admits a least solution (unique up to equivalence).

When A is an automaton, we write

▶ A(q) for the least solution to A at q

▶ ⌊A⌋ for the sum of A(q) for q ∈ I

Lemma
If e ∈ Exp, then |= ⌊Ae⌋ ≤ e.
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▶ ⌊A⌋ for the sum of A(q) for q ∈ I

Lemma
If e ∈ Exp, then |= ⌊Ae⌋ ≤ e.
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Peeling the onion
Solving monoids

Definition (Transition automaton; McNaughton and Papert 1968)

Let R ∈ MA. We write A[R] for the transition automaton (MA,→◦, {∆}, {R}) where

P
a−→◦ Q ⇐⇒ P ◦ a−→ = Q

Intuition: w ∈ L(A[R]) means q R q′ iff w traces from q to q′ in A.
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Peeling the onion
Solving monoids

Lemma (Solving transition automata)

Let A be an automaton, let q ∈ Q and let R ∈ MA with q R qf ∈ F . We have

|= ⌊A[R]⌋ ≤ A(q)

Let he : Σ → Ke be given by he(a) = { a−→e}.

Lemma
Let e ∈ Exp and let R ∈ ĥe(e). Then |= Ae [R] ≤ e.
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Peeling the onion
Solving Kleene algebras

Let he : Σ → Ke be given by he(a) = { a−→e}.

Lemma
Let e, f ∈ Exp. We have that

|= f ≤
∑

R∈ĥe(f )

⌊Ae [R]⌋

Proof sketch.
By induction on f .
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Peeling the onion
Proving the main lemma

Lemma
Let e, f ∈ Exp. If Ke |= e = f and Kf |= e = f , then |= e = f .

Proof.
Since Ke |= e = f , we have that ĥe(e) = ĥe(f ); we can then derive

|= f ≤
∑

R∈ĥe(f )

⌊Ae [R]⌋ =
∑

R∈ĥe(e)

⌊Ae [R]⌋ ≤ e

By a similar argument, |= e ≤ f ; the claim then follows.
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Peeling the onion
The grand finale

Theorem
If F |= e = f , then |= e = f .

Proof.
Since Ke and Kf are finite KAs, we have that Ke |= e = f and Kf |= e = f .

The proof then follows by the previous lemma.
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Some thoughts

▶ The proof uses Antimirov’s instead of Brzozowski’s construction.

▶ We do not rely on bisimilarity-based arguments at all (c.f. Jacobs 2006).

▶ We do not use the right-handed axioms for the star:

1 + x · x∗ = x∗
x + y · z ≤ y

x · z∗ ≤ y

▶ These were known not to be necessary

¬ Krob 1990; Boffa 1990; Das, Doumane, and Pous 2018; Kozen and Silva 2020

▶ Upshot: a proof-theoretic result for KA: “right-hand elimination”.

28 / 30



Some thoughts

▶ The proof uses Antimirov’s instead of Brzozowski’s construction.

▶ We do not rely on bisimilarity-based arguments at all (c.f. Jacobs 2006).

▶ We do not use the right-handed axioms for the star:

1 + x · x∗ = x∗
x + y · z ≤ y

x · z∗ ≤ y

▶ These were known not to be necessary

¬ Krob 1990; Boffa 1990; Das, Doumane, and Pous 2018; Kozen and Silva 2020

▶ Upshot: a proof-theoretic result for KA: “right-hand elimination”.

28 / 30



Some thoughts

▶ The proof uses Antimirov’s instead of Brzozowski’s construction.

▶ We do not rely on bisimilarity-based arguments at all (c.f. Jacobs 2006).

▶ We do not use the right-handed axioms for the star:

1 + x · x∗ = x∗
x + y · z ≤ y

x · z∗ ≤ y

▶ These were known not to be necessary

¬ Krob 1990; Boffa 1990; Das, Doumane, and Pous 2018; Kozen and Silva 2020

▶ Upshot: a proof-theoretic result for KA: “right-hand elimination”.

28 / 30



Some thoughts

▶ The proof uses Antimirov’s instead of Brzozowski’s construction.

▶ We do not rely on bisimilarity-based arguments at all (c.f. Jacobs 2006).

▶ We do not use the right-handed axioms for the star:

1 + x · x∗ = x∗
x + y · z ≤ y

x · z∗ ≤ y

▶ These were known not to be necessary

¬ Krob 1990; Boffa 1990; Das, Doumane, and Pous 2018; Kozen and Silva 2020

▶ Upshot: a proof-theoretic result for KA: “right-hand elimination”.

28 / 30



Coq formalization

▶ All results formalized in the Coq proof assistant.

▶ Trusted base:
▶ Calculus of Inductive Constructions.
▶ Streicher’s axiom K.
▶ Dependent functional extensionality.

▶ Some concepts are encoded differently; ideas remain the same.
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Further open questions

▶ Can we apply these ideas to guarded Kleene algebra with tests?

▶ Do these techniques extend to KA with hypotheses?

▶ Is there a representation theorem or duality for KA?

https://kap.pe/slides https://kap.pe/papers
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Bonus: extending the model theory

Lemma
If FR |= e = f , then |= e = f .

Proof sketch.
We show that FR |= e = f implies P(Σ∗) |= e = f . For n ∈ N, choose

Σn = {w ∈ Σ∗ : |w | ≤ n} hn : Σ → R(Σn), a 7→ {(w ,wa) : wa ∈ Σn}

For all w ∈ Σn and regular expressions g , we now have w ∈ ℓ̂(g) iff (ϵ,w) ∈ ĥn(g).

Thus w ∈ ℓ̂(f ) if and only if w ∈ ĥ|w |(e) = ĥ|w |(f ) if and only if w ∈ ℓ̂(f ).

This means that P(Σ∗), ℓ |= e = f , whence P(Σ∗) |= e = f .
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Bonus: pomsets
Expressions in concurrent KA (CKA) are generated by

e, f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e ∥ f | e∗ | e†

Definition (Bi-KA)

A bi-KA is a tuple (K ,+, ·, ∥, ∗, †, 0, 1) where
▶ (K ,+, ·, ∗) and (K ,+, ∥, †) are both KAs, and

▶ ∥ commutes, i.e., K |= e ∥ f = f ∥ e.

A weak bi-KA is a bi-KA without the †.

Definition (Concurrent KA)

A (weak) concurrent KA is a (weak) bi-KA K satisfying

(e ∥ g) · (f ∥ h) ≤ (e · f ) ∥ (g · h)

32 / 30



Bonus: pomsets
Expressions in concurrent KA (CKA) are generated by

e, f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e ∥ f | e∗ | e†

Definition (Bi-KA)

A bi-KA is a tuple (K ,+, ·, ∥, ∗, †, 0, 1) where
▶ (K ,+, ·, ∗) and (K ,+, ∥, †) are both KAs, and

▶ ∥ commutes, i.e., K |= e ∥ f = f ∥ e.

A weak bi-KA is a bi-KA without the †.

Definition (Concurrent KA)

A (weak) concurrent KA is a (weak) bi-KA K satisfying

(e ∥ g) · (f ∥ h) ≤ (e · f ) ∥ (g · h)

32 / 30



Bonus: pomsets
Expressions in concurrent KA (CKA) are generated by

e, f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e ∥ f | e∗ | e†

Definition (Bi-KA)

A bi-KA is a tuple (K ,+, ·, ∥, ∗, †, 0, 1) where
▶ (K ,+, ·, ∗) and (K ,+, ∥, †) are both KAs, and

▶ ∥ commutes, i.e., K |= e ∥ f = f ∥ e.

A weak bi-KA is a bi-KA without the †.

Definition (Concurrent KA)

A (weak) concurrent KA is a (weak) bi-KA K satisfying

(e ∥ g) · (f ∥ h) ≤ (e · f ) ∥ (g · h)

32 / 30



Bonus: pomsets

Example

The bi-KA of pomset languages over Σ is (P(Pom(Σ)),∪, ·, ∥, ∗, †, ∅, {1}), where
▶ Pom(Σ) denotes the set of pomsets over Σ;

▶ 1 denotes the empty pomset;

▶ L · L′ = {U · V : U ∈ L,V ∈ L′} and similarly for ∥; and
▶ L∗ = {1} ∪ L ∪ L · L ∪ · · · and L† = {1} ∪ L ∪ L ∥ L ∪ · · · .
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Bonus: pomsets

Example

The concurrent KA of pomset ideals over Σ is (I(Σ),∪, ·, ∥, ∗, †, ∅, {1}), where
▶ I(Σ) contains the pomset languages downward-closed under ⊑; and

▶ the operators are as for bi-KA, but followed by downward closure under ⊑.
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Bonus: pomsets

Theorem (Laurence and Struth 2014)

Let e and f be (weak) concurrent KA expressions.

Now P(Pom(Σ)) |= e = f if and only if K |= e = f for all (weak) bi-KAs K

Theorem (Laurence and Struth 2017; K., Brunet, Silva, et al. 2018)

Let e and f be weak concurrent KA expressions.

Now I(Σ) |= e = f if and only if K |= e = f for all weak CKAs K
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Bonus: pomsets

Conjecture

Let e and f be concurrent KA expressions.

Now I(Σ) |= e = f if and only if K |= e = f for all CKAs K

Current techniques do not work!
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Bonus: pomsets

<speculation>
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Bonus: pomsets

The following roadmap might work:

1. Translate CKA expressions to automata

⇒ Pomset automata (K., Brunet, Luttik, et al. 2019)

⇒ or HDAs (van Glabbeek 2004; Fahrenberg 2005; Fahrenberg et al. 2022)

2. Translate these automata to ordered bimonoids (Bloom and Ésik 1996)

⇒ see also (Lodaya and Weil 2000; van Heerdt et al. 2021)

3. Translate bimonoids to concurrent KAs.

⇒ essentially the same recipe?
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Bonus: pomsets

</speculation>
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