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» The main theorems in this talk are not new, but the proofs are.
> Even if the contents are technical, the techniques are elementary.

» | learned most constructions as an undergraduate, here in Leiden.
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» Laws of Kleene algebra (KA) model equivalence of regular expressions.

? Salomaa 1966; Conway 1971; Boffa 1990; Krob 1990; Kozen 1994
> They are also useful when reasoning about programming languages.

? Kozen and Patron 2000; Anderson et al. 2014; Smolka et al. 2015
» When is something true only by the laws of KA?

> How can we concisely show that something is not provable in KA?
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Kleene algebra

Definition

Definition (Kleene algebra; c.f. Kozen 1994)
A Kleene algebra is a tuple (K, +,-,*,0,1) where

(1) The “usual” laws for + and - hold (associativity, distributivity, etc. ..)

(2) For all x,y,z € K, the following are true:

X+x=x 14+ x-x*=x" 1+x* - x=x"
X+y-z<z x+y-z<y
y* x<z x-z'<y

Here, x < y is a shorthand for x +y = y.
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Kleene algebra

Languages

Fix a (finite) set of letters ¥, and write ¥* for the set of words over ¥.

Example (KA of languages)
The KA of languages over ¥ is given by (P(X*),U, -, *, 0, {€}), where
» P(X*) is the set of sets of words (languages);

» . is pointwise concatenation, i.e., L- K ={wx:w € L,x € K};
» *is the Kleene star, i.e., L* ={wy - -wy:wi,...,w, € L};

P ¢ is the empty word.
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Kleene algebra

Relations

Fix a (not necessarily finite) set of states S.

Example (KA of relations)
The KA of relations over S is given by (R(S),U,o,*, (), A), where
» R(S) is the set of relations on S;

P o is relational composition.
> * is the reflexive-transitive closure.

> A is the identity relation.
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Claim
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Proof. First, let's recall the fixpoint rule:

x+y-z<z
y* x<z

It suffices to prove that u+u-v-u-(v-u)" <uwu-(v-u)"; we derive:
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Kleene algebra

Reasoning example

Claim
In every KA K and for all u,v € K, it holds that (u-v)"-u<u-(v-u)".

Proof. First, let's recall the fixpoint rule:

x+y-z<z
y* x<z

It suffices to prove that u+u-v-u-(v-u)" <uwu-(v-u)"; we derive:

utu-veou-(veu) =u-(I+v-ou-(v-u))=u-(v-u)
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Definition
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e,fi=0|1|aecX|e+f|e-f|e"
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Exp is the set of regular expressions, generated by

e,fi=0|1|aecX|e+f|e-f|e"

Definition R

Given a KA (K,+,-,%,0,1) and h: £ — K, we define h: Exp — K by
h(0)=0 h(a) = h(a) h(e - f) = h(e) - h(f)
h(1) =1 h(e + f) = h(e) + h(f) h(e*) = h(e)"
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Definition
Exp is the set of regular expressions, generated by

e,fi=0|1|aecX|e+f|e-f|e"

Definition R

Given a KA (K,+,-,%,0,1) and h: £ — K, we define h: Exp — K by
h(0)=0 h(a) = h(a) h(e - f) = h(e) - h(f)
h(1) =1 h(e + f) = h(e) + h(f) h(e*) = h(e)"

Example

~

If £:% — P(X*) where {(a) = {a}, then £(e) is the regular language denoted by e.
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Kleene algebra
Model theory

Let e, f € Exp. We write ...
K,h|=e=f when K isa KA and h: ¥ — K with h(e) = h(f).

K =e=1f when K isa KA and K, h|=e = f for all h.

>

>

» =e=1f when K = e =f for every KA K.

» F = e=f when K =e=f holds in every finite KA K.
>

R =e=f when R(S) =e="f forall S.
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Palka's proof relies on Kozen's completeness theorem. She writes:
... an independent proof of [the finite model property] would provide a quite

different proof of the Kozen completeness theorem, based on purely logical
tools. We defer this task to further research. (Palka 2005)

We found such a proof — with many ideas inspired by Palka.
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Main result
A roadmap

Need to show: if §=e=f, then e =f.

Given e, f € Exp we do the following:

1.

A

11/30

Turn expressions e into a finite automaton Ae

Convert the finite automaton A, into a finite monoid M,
Translate the finite monoid M. into a finite KA K.
Prove something about interpretations inside K

Apply the premise that =e = f



Expressions to automata

Definition

An automaton is a tuple A = (Q, —, I, F) where
» (@ is a finite set of states; and
> - C @ XX x Qis the transition relation:;
» | C Q@ is the set of initial states
> F C Q is the set of accepting states

We write ¢ = ¢’ when (g,a,q) € —.
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Expressions to automata

Definition
An automaton is a tuple A = (Q, —, I, F) where a b
» (@ is a finite set of states; and
> - C @ XX x Qis the transition relation:;
» | C Q@ is the set of initial states

> F C Q is the set of accepting states
We write ¢ = ¢’ when (g,a,q) € —.

ay

The languageof g € Qis La(q) ={a1---a, €X*:q B o---0 5 ¢ € F}

The language of A is given by J,¢; La(q)-
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Expressions to automata

Lemma (c.f. Kleene 1956; Brzozowski 1964; Antimirov 1996)
For every e, we can construct an automaton Ae that accepts the language of e.
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Automata to monoids

Let A= (Q,—,/, F) be an automaton.

Definition (Transition monoid; McNaughton and Papert 1968)
(Mg, 0,A) is the monoid where Mg = {25 0---0 2% 1 a;---a, € T*}.
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Monoids to Kleene algebras

Lemma (Palka 2005)
Let (M,-,1) be a monoid. Now (P(M),U,®,%,0,{1}) is a KA, where

ToU={t-u:tecTAuecU} T®={t1--th:t1,...,t, € T}
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Putting it all together

Given an expression e, we can now obtain a finite KA Ko = P(Ma,).
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Putting it all together

Given an expression e, we can now obtain a finite KA Ko = P(Ma,).

Lemma
Lete,f € Exp. If Ke =e=1f and Kr =e=f, then |=e=f.

Theorem (Finite model property)
If§Ee=fthenEe="f.
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Peeling the onion

Solving automata

Definition
Let (Q,—,/, F) be an automaton. A solution is a function s : @ — Exp such that
1 geF
F(q) + a-s(q)<s F(q) =
= F(q) Z (q') <s(q) (q) {0 ad F
qa—q’
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Peeling the onion

Solving automata

Example
For the automaton on the right, a solution satisfies

=1+a-s(qo)+b-s(q)

1 (o)
=0+a-s(q1)+b-s(qo) 1

(q1)

<s
<s
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Peeling the onion

Solving automata

Example (Continued)
We start with the second condition:

0+a-s(q1)+b-s(qo) < s(q1)
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Peeling the onion

Solving automata

Example (Continued)
We start with the second condition:

0+a-s(q1)+b-s(qo) < s(q1)

We can rewrite this as
a-s(q1) +b-s(qo) < s(qu)

which by the fixpoint rule implies

a*-b-s(qo) < s(q1)
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Peeling the onion

Solving automata

Example (Continued)
Now we look at the second condition

1+a-s(qo)+b-s(q1) <s(qo)
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Peeling the onion

Solving automata

Example (Continued)
Now we look at the second condition

1+a-s(q0) +b-s(q1) < s(qo)
Substituting a* - b - s(qo) < s(q1) we get

1+a-s(qo)+b-a*-b-s(q0) < s(qo)
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Peeling the onion

Solving automata

Example (Continued)
Now we look at the second condition

1+a-s(q0) +b-s(q1) < s(qo)
Substituting a* - b - s(qo) < s(q1) we get
1+a-s(qo)+b-a*-b-s(q0) < s(qo)

which rewrites to
1+ (a+b-a"-b)-s(q) < s(qo)
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Peeling the onion

Solving automata

Example (Continued)
Now we look at the second condition

1+a-s(q0) +b-s(q1) < s(qo)
Substituting a* - b - s(qo) < s(q1) we get
1+a-s(qo)+b-a*-b-s(q0) < s(qo)

which rewrites to
1+ (a+b-a"-b)-s(q) < s(qo)
By the fixpoint rule
(a+b-a"-b)" <s(qo)
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Peeling the onion

Solving automata

Example (Continued)
We now have two lower bounds:

(a+b-a*-b)"
a*-b-(a+b-a"-b)"

(q0)
(q1)

<s
<s

21/30



Peeling the onion

Solving automata

Example (Continued)
We now have two lower bounds:

(a+Db-a"-b)
a*-b-(a+b-a"-b)

s(qo)

* <
" < s(q1)

It turns these are also solutions to A — thus we found the least solution.
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Peeling the onion

Solving automata

Theorem (Kleene 1956; see also Conway 1971)
Every automaton admits a least solution (unique up to equivalence).

22/30



Peeling the onion

Solving automata
Theorem (Kleene 1956; see also Conway 1971)
Every automaton admits a least solution (unique up to equivalence).

When A is an automaton, we write
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Peeling the onion

Solving automata
Theorem (Kleene 1956; see also Conway 1971)
Every automaton admits a least solution (unique up to equivalence).

When A is an automaton, we write
» A(q) for the least solution to A at g
» | A| for the sum of A(q) for g € |

Lemma
If e € Exp, then |= [Ae] < e.
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Peeling the onion

Solving monoids

Definition (Transition automaton; McNaughton and Papert 1968)
Let R € Ma. We write A[R] for the transition automaton (Ma, —.,{A},{R}) where

P35, Q < Po3=0Q
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Peeling the onion

Solving monoids

Definition (Transition automaton; McNaughton and Papert 1968)
Let R € Ma. We write A[R] for the transition automaton (Ma, —.,{A},{R}) where

P35, Q < Po3=0Q

Intuition: w € L(A[R]) means g R ¢’ iff w traces from q to ¢’ in A.
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Peeling the onion

Solving monoids

Lemma (Solving transition automata)
Let A be an automaton, let g € Q and let R € My with g R qr € F. We have

= LA[R]) < A(q)

24/30



Peeling the onion

Solving monoids

Lemma (Solving transition automata)
Let A be an automaton, let g € Q and let R € M with g R g € F. We have

= LA[R]) < A(q)

Let he : ¥ — K. be given by he(a) = {3}
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Peeling the onion

Solving monoids

Lemma (Solving transition automata)
Let A be an automaton, let g € Q and let R € M with g R g € F. We have

= LA[R]) < A(q)

Let he : ¥ — K. be given by he(a) = {3}

Lemma R
Let e € Exp and let R € he(e). Then |= Ac[R] < e.
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Peeling the onion

Solving Kleene algebras

Let he : ¥ — K. be given by he(a) = {Z¢}.
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Peeling the onion

Solving Kleene algebras

Let he : ¥ — K. be given by he(a) = {Z¢}.

Lemma
Let e, f € Exp. We have that

=< > AR

Rehe(f)

Proof sketch.
By induction on f.
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Peeling the onion

Proving the main lemma

26/30

Lemma
Lete,f €cExp. If Ke =e=f and K =e=f, then =e=f.

Proof. R R
Since K. = e = f, we have that he(e) = he(f); we can then derive

=r< Y AR = Y AR <e

Rehe(f) Rehe(e)

By a similar argument, |= e < f; the claim then follows.



Peeling the onion
The grand finale

Theorem
If§Ee=f,then=e="f.

Proof.
Since K. and Ky are finite KAs, we have that K. Fe=fand Kr Fe="f.
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Peeling the onion
The grand finale

Theorem
If§l=e=f, thenl=e=f.

Proof.
Since K. and Ky are finite KAs, we have that K. Fe=fand Kr Fe="f.

The proof then follows by the previous lemma.
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Some thoughts

» The proof uses Antimirov’s instead of Brzozowski's construction.
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Some thoughts

» The proof uses Antimirov’s instead of Brzozowski's construction.
» We do not rely on bisimilarity-based arguments at all (c.f. Jacobs 2006).
> We do not use the right-handed axioms for the star:

xX+y-z<
x-z <y

» These were known not to be necessary

? Krob 1990; Boffa 1990; Das, Doumane, and Pous 2018; Kozen and Silva 2020

» Upshot: a proof-theoretic result for KA: “right-hand elimination”.
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Coq formalization

» All results formalized in the Coq proof assistant.

» Trusted base:

» Calculus of Inductive Constructions.
» Streicher's axiom K.
» Dependent functional extensionality.

» Some concepts are encoded differently; ideas remain the same.
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Further open questions

» Can we apply these ideas to guarded Kleene algebra with tests?
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Lemma
If§R=e="f, then =e=f.

Proof sketch.
We show that §R = e = f implies P(X*) = e = f. For n € N, choose

Yo={weX":|w <n} hn X — R(X,), a— {(w,wa) : wa € X,}

For all w € ¥, and regular expressions g, we now have w € Z(g) iff (e, w) € hA,,(g)

Thus w € £(f) if and only if w € h/|;|(e) = @(f) if and only if w € £(f).
This means that P(X*),/ |= e = f, whence P(X*) e ="f.

31/30
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Bonus: pomsets
Expressions in concurrent KA (CKA) are generated by

ef:=0|1]acX|e+f|e-flel|f|e]|el
Definition (Bi-KA)
A bi-KA is a tuple (K, +,-,|,*,T,0,1) where
> (K,+,-,*) and (K,+,]|,T) are both KAs, and

» || commutes, ie., KEEel f="1]e.
A weak bi-KA is a bi-KA without the T.

Definition (Concurrent KA)
A (weak) concurrent KA is a (weak) bi-KA K satisfying

(ellg)-(Fllh)<(e-f)l(g-h)
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Bonus: pomsets

Example
The bi-KA of pomset languages over ¥ is (P(Pom(X)),U, -, ||,*, 1,0, {1}), where

» Pom(X) denotes the set of pomsets over ¥;

» 1 denotes the empty pomset;

> L-'={U-V:UeL,Vel'} and similarly for ||; and
> [*={1}ULUL-LU--- and L' = {1}ULUL| LU---

33/30



Bonus: pomsets

Example
The concurrent KA of pomset ideals over ¥ is (Z(X),U, -, ||,*,, 0, {1}), where

» 7Z(X) contains the pomset languages downward-closed under C; and

» the operators are as for bi-KA, but followed by downward closure under C.
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Bonus: pomsets

Theorem (Laurence and Struth 2014)
Let e and f be (weak) concurrent KA expressions.

Now P(Pom(X)) = e = f ifand only if K = e = f for all (weak) bi-KAs K
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Theorem (Laurence and Struth 2014)

Let e and f be (weak) concurrent KA expressions.

Now P(Pom(X)) |= e = f if and only if K |= e = f for all (weak) bi-KAs K

Theorem (Laurence and Struth 2017; K., Brunet, Silva, et al. 2018)
Let e and f be weak concurrent KA expressions.

Now Z(X) = e = f ifand only if K |= e = f for all weak CKAs K



Bonus: pomsets

Conjecture
Let e and f be concurrent KA expressions.

Now Z(X) = e = f ifand only if K |= e = f for all CKAs K
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Bonus: pomsets

Conjecture
Let e and f be concurrent KA expressions.

Now Z(X) = e = f ifand only if K |= e = f for all CKAs K

Current techniques do not work!
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<speculation>
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The following roadmap might work:
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Bonus: pomsets

The following roadmap might work:

1. Translate CKA expressions to automata
= Pomset automata (K., Brunet, Luttik, et al. 2019)
= or HDAs (van Glabbeek 2004; Fahrenberg 2005; Fahrenberg et al. 2022)

2. Translate these automata to ordered bimonoids (Bloom and Esik 1996)

= see also (Lodaya and Weil 2000; van Heerdt et al. 2021)

3. Translate bimonoids to concurrent KAs.

= essentially the same recipe?

38/30
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</speculation>
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