Completeness and the FMP for KA，revisited

Tobias Kappé
LIACS seminar，January 22， 2024

Prelude

- The main theorems in this talk are not new, but the proofs are.

Prelude

- The main theorems in this talk are not new, but the proofs are.
- Even if the contents are technical, the techniques are elementary.

Prelude

- The main theorems in this talk are not new, but the proofs are.
- Even if the contents are technical, the techniques are elementary.
- I learned most constructions as an undergraduate, here in Leiden.

Motivation

- Laws of Kleene algebra (KA) model equivalence of regular expressions.
© Salomaa 1966; Conway 1971; Boffa 1990; Krob 1990; Kozen 1994

Motivation

- Laws of Kleene algebra (KA) model equivalence of regular expressions.
© Salomaa 1966; Conway 1971; Boffa 1990; Krob 1990; Kozen 1994
- They are also useful when reasoning about programming languages.
§ Kozen and Patron 2000; Anderson et al. 2014; Smolka et al. 2015

Motivation

- Laws of Kleene algebra (KA) model equivalence of regular expressions.
© Salomaa 1966; Conway 1971; Boffa 1990; Krob 1990; Kozen 1994
- They are also useful when reasoning about programming languages.

K Kozen and Patron 2000; Anderson et al. 2014; Smolka et al. 2015

- When is something true only by the laws of $K A$?

Motivation

- Laws of Kleene algebra (KA) model equivalence of regular expressions.
© Salomaa 1966; Conway 1971; Boffa 1990; Krob 1990; Kozen 1994
- They are also useful when reasoning about programming languages.

K Kozen and Patron 2000; Anderson et al. 2014; Smolka et al. 2015

- When is something true only by the laws of $K A$?
- How can we concisely show that something is not provable in KA?

Kleene algebra

Definition

Definition (Kleene algebra; c.f. Kozen 1994)
A Kleene algebra is a tuple $\left(K,+, \cdot,{ }^{*}, 0,1\right)$ where

Kleene algebra

Definition

Definition (Kleene algebra; c.f. Kozen 1994)
A Kleene algebra is a tuple $\left(K,+, \cdot,{ }^{*}, 0,1\right)$ where
(1) The "usual" laws for + and \cdot hold (associativity, distributivity, etc. . .)

Kleene algebra

Definition

Definition (Kleene algebra; c.f. Kozen 1994)

A Kleene algebra is a tuple $\left(K,+, \cdot,{ }^{*}, 0,1\right)$ where
(1) The "usual" laws for + and \cdot hold (associativity, distributivity, etc. . .)
(2) For all $x, y, z \in K$, the following are true:

$$
\begin{array}{cc}
x+x= & x \quad 1+x \cdot x^{*}=x^{*} \\
\frac{x+y \cdot z \leq z}{y^{*} \cdot x \leq z} & \frac{x+y \cdot z \leq y}{x \cdot z^{*} \leq y}
\end{array}
$$

Here, $x \leq y$ is a shorthand for $x+y=y$.

Kleene algebra

Languages

Fix a (finite) set of letters Σ, and write Σ^{*} for the set of words over Σ.

Example (KA of languages)

The KA of languages over Σ is given by $\left(\mathcal{P}\left(\Sigma^{*}\right), \cup, \cdot,^{*}, \emptyset,\{\epsilon\}\right)$, where

- $\mathcal{P}\left(\Sigma^{*}\right)$ is the set of sets of words (languages);
- . is pointwise concatenation, i.e., $L \cdot K=\{w x: w \in L, x \in K\}$;
- ${ }^{*}$ is the Kleene star, i.e., $L^{*}=\left\{w_{1} \cdots w_{n}: w_{1}, \ldots, w_{n} \in L\right\}$;
- ϵ is the empty word.

Kleene algebra

Relations

Fix a (not necessarily finite) set of states S.

Example (KA of relations)

The KA of relations over S is given by $\left(\mathcal{R}(S), \cup, \circ,{ }^{*}, \emptyset, \Delta\right)$, where

- $\mathcal{R}(S)$ is the set of relations on S;
- \circ is relational composition.
- * is the reflexive-transitive closure.
- Δ is the identity relation.

Kleene algebra

Reasoning example

Claim
In every KA K and for all $u, v \in K$, it holds that $(u \cdot v)^{*} \cdot u \leq u \cdot(v \cdot u)^{*}$.

Kleene algebra

Reasoning example

Claim

In every KA K and for all $u, v \in K$, it holds that $(u \cdot v)^{*} \cdot u \leq u \cdot(v \cdot u)^{*}$.
Proof. First, let's recall the fixpoint rule:

$$
\frac{x+y \cdot z \leq z}{y^{*} \cdot x \leq z}
$$

Kleene algebra

Reasoning example

Claim

In every KA K and for all $u, v \in K$, it holds that $(u \cdot v)^{*} \cdot u \leq u \cdot(v \cdot u)^{*}$.
Proof. First, let's recall the fixpoint rule:

$$
\frac{x+y \cdot z \leq z}{y^{*} \cdot x \leq z}
$$

It suffices to prove that $u+u \cdot v \cdot u \cdot(v \cdot u)^{*} \leq u \cdot(v \cdot u)^{*}$;

Kleene algebra

Reasoning example

Claim

In every KA K and for all $u, v \in K$, it holds that $(u \cdot v)^{*} \cdot u \leq u \cdot(v \cdot u)^{*}$.
Proof. First, let's recall the fixpoint rule:

$$
\frac{x+y \cdot z \leq z}{y^{*} \cdot x \leq z}
$$

It suffices to prove that $u+u \cdot v \cdot u \cdot(v \cdot u)^{*} \leq u \cdot(v \cdot u)^{*}$; we derive:

$$
u+u \cdot v \cdot u \cdot(v \cdot u)^{*}
$$

Kleene algebra

Reasoning example

Claim

In every $K A K$ and for all $u, v \in K$, it holds that $(u \cdot v)^{*} \cdot u \leq u \cdot(v \cdot u)^{*}$.
Proof. First, let's recall the fixpoint rule:

$$
\frac{x+y \cdot z \leq z}{y^{*} \cdot x \leq z}
$$

It suffices to prove that $u+u \cdot v \cdot u \cdot(v \cdot u)^{*} \leq u \cdot(v \cdot u)^{*}$; we derive:

$$
u+u \cdot v \cdot u \cdot(v \cdot u)^{*}=u \cdot\left(1+v \cdot u \cdot(v \cdot u)^{*}\right)
$$

Kleene algebra

Reasoning example

Claim

In every $K A K$ and for all $u, v \in K$, it holds that $(u \cdot v)^{*} \cdot u \leq u \cdot(v \cdot u)^{*}$.
Proof. First, let's recall the fixpoint rule:

$$
\frac{x+y \cdot z \leq z}{y^{*} \cdot x \leq z}
$$

It suffices to prove that $u+u \cdot v \cdot u \cdot(v \cdot u)^{*} \leq u \cdot(v \cdot u)^{*}$; we derive:

$$
u+u \cdot v \cdot u \cdot(v \cdot u)^{*}=u \cdot\left(1+v \cdot u \cdot(v \cdot u)^{*}\right)=u \cdot(v \cdot u)^{*}
$$

Kleene algebra

Expressions

Definition

Exp is the set of regular expressions, generated by

$$
e, f::=0|1| a \in \Sigma|e+f| e \cdot f \mid e^{*}
$$

Kleene algebra

Expressions

Definition

Exp is the set of regular expressions, generated by

$$
e, f::=0|1| \mathrm{a} \in \Sigma|e+f| e \cdot f \mid e^{*}
$$

Definition

Given a KA $\left(K,+, \cdot,{ }^{*}, 0,1\right)$ and $h: \Sigma \rightarrow K$, we define $\widehat{h}: \operatorname{Exp} \rightarrow K$ by

$$
\begin{array}{lrrl}
\widehat{h}(0) & =0 & \widehat{h}(\mathrm{a}) & =h(\mathrm{a}) \\
\widehat{h}(1) & =1 & \widehat{h}(e+f) & =\widehat{h}(e)+\widehat{h}(f)
\end{array}
$$

Kleene algebra

Expressions

Definition

Exp is the set of regular expressions, generated by

$$
e, f::=0|1| \mathrm{a} \in \Sigma|e+f| e \cdot f \mid e^{*}
$$

Definition

Given a KA $\left(K,+, \cdot,{ }^{*}, 0,1\right)$ and $h: \Sigma \rightarrow K$, we define $\hat{h}: \operatorname{Exp} \rightarrow K$ by

$$
\begin{array}{rrrl}
\widehat{h}(0) & =0 & \widehat{h}(\mathrm{a}) & =h(\mathrm{a}) \\
\widehat{h}(1) & =1 & \widehat{h}(e+f) & =\widehat{h}(e)+\widehat{h}(f)
\end{array}
$$

Example

If $\ell: \Sigma \rightarrow \mathcal{P}\left(\Sigma^{*}\right)$ where $\ell(\mathrm{a})=\{\mathrm{a}\}$, then $\widehat{\ell}(e)$ is the regular language denoted by e.

Kleene algebra

Model theory

Let $e, f \in \operatorname{Exp}$. We write...

- $K, h \models e=f$ when K is a KA and $h: \Sigma \rightarrow K$ with $\widehat{h}(e)=\widehat{h}(f)$.

Kleene algebra

Model theory

Let $e, f \in \operatorname{Exp}$. We write...

- $K, h \models e=f$ when K is a KA and $h: \Sigma \rightarrow K$ with $\widehat{h}(e)=\widehat{h}(f)$.
- $K \models e=f$ when K is a KA and $K, h \models e=f$ for all h.

Kleene algebra

Model theory

Let $e, f \in \operatorname{Exp}$. We write...

- $K, h \models e=f$ when K is a KA and $h: \Sigma \rightarrow K$ with $\widehat{h}(e)=\widehat{h}(f)$.
- $K \models e=f$ when K is a KA and $K, h \models e=f$ for all h.
- $\models e=f$ when $K \models e=f$ for every KA K.

Kleene algebra

Model theory

Let $e, f \in \operatorname{Exp}$. We write...

- $K, h \models e=f$ when K is a KA and $h: \Sigma \rightarrow K$ with $\widehat{h}(e)=\widehat{h}(f)$.
- $K \models e=f$ when K is a KA and $K, h \models e=f$ for all h.
- $\models e=f$ when $K \models e=f$ for every KA K.
- $\mathfrak{F} \mid=e=f$ when $K \models e=f$ holds in every finite KA K.

Kleene algebra

Model theory

Let $e, f \in \operatorname{Exp}$. We write...

- $K, h \models e=f$ when K is a KA and $h: \Sigma \rightarrow K$ with $\widehat{h}(e)=\widehat{h}(f)$.
- $K \models e=f$ when K is a KA and $K, h \models e=f$ for all h.
- $\models e=f$ when $K \models e=f$ for every KA K.
- $\mathfrak{F} \models e=f$ when $K \models e=f$ holds in every finite KA K.
- $\mathfrak{R} \models e=f$ when $\mathcal{R}(S) \models e=f$ for all S.

Kleene algebra

Model theory

$$
\begin{aligned}
& 1=e=f \\
& \text { (Kozen 1994) } \\
& \mathcal{P}\left(\Sigma^{*}\right) \models e=f
\end{aligned}
$$

Kleene algebra

Model theory

Kleene algebra

Model theory

Main result

```
In a nutshell
```

Palka's proof relies on Kozen's completeness theorem.

Main result

In a nutshell

Palka's proof relies on Kozen's completeness theorem. She writes:
...an independent proof of [the finite model property] would provide a quite different proof of the Kozen completeness theorem, based on purely logical tools. We defer this task to further research.
(Palka 2005)

Main result

```
In a nutshell
```

Palka's proof relies on Kozen's completeness theorem. She writes:
...an independent proof of [the finite model property] would provide a quite different proof of the Kozen completeness theorem, based on purely logical tools. We defer this task to further research.
(Palka 2005)

We found such a proof - with many ideas inspired by Palka.

Main result

A roadmap

Need to show: if $\mathfrak{F} \models e=f$, then $\models e=f$.

Main result

A roadmap

Need to show: if $\mathfrak{F} \models e=f$, then $\models e=f$.
Given $e, f \in \operatorname{Exp}$ we do the following:

1. Turn expressions e into a finite automaton A_{e}

Main result

A roadmap

Need to show: if $\mathfrak{F} \models e=f$, then $\models e=f$.
Given $e, f \in \operatorname{Exp}$ we do the following:

1. Turn expressions e into a finite automaton A_{e}
2. Convert the finite automaton A_{e} into a finite monoid M_{e}

Main result

A roadmap

Need to show: if $\mathfrak{F} \models e=f$, then $\models e=f$.
Given $e, f \in \operatorname{Exp}$ we do the following:

1. Turn expressions e into a finite automaton A_{e}
2. Convert the finite automaton A_{e} into a finite monoid M_{e}
3. Translate the finite monoid M_{e} into a finite KA K_{e}

Main result

A roadmap

Need to show: if $\mathfrak{F} \models e=f$, then $\models e=f$.
Given $e, f \in \operatorname{Exp}$ we do the following:

1. Turn expressions e into a finite automaton A_{e}
2. Convert the finite automaton A_{e} into a finite monoid M_{e}
3. Translate the finite monoid M_{e} into a finite KA K_{e}
4. Prove something about interpretations inside K_{e}

Main result

A roadmap

Need to show: if $\mathfrak{F} \models e=f$, then $\models e=f$.
Given $e, f \in \operatorname{Exp}$ we do the following:

1. Turn expressions e into a finite automaton A_{e}
2. Convert the finite automaton A_{e} into a finite monoid M_{e}
3. Translate the finite monoid M_{e} into a finite KA K_{e}
4. Prove something about interpretations inside K_{e}
5. Apply the premise that $=e=f$

Expressions to automata

Definition

An automaton is a tuple $A=(Q, \rightarrow, I, F)$ where

- Q is a finite set of states; and
- $\rightarrow \subseteq Q \times \Sigma \times Q$ is the transition relation;
- $I \subseteq Q$ is the set of initial states
- $F \subseteq Q$ is the set of accepting states

We write $q \xrightarrow{\mathrm{a}} q^{\prime}$ when $\left(q, \mathrm{a}, q^{\prime}\right) \in \rightarrow$.

Expressions to automata

Definition

An automaton is a tuple $A=(Q, \rightarrow, I, F)$ where

- Q is a finite set of states; and
- $\rightarrow \subseteq Q \times \Sigma \times Q$ is the transition relation;
- $I \subseteq Q$ is the set of initial states

- $F \subseteq Q$ is the set of accepting states

We write $q \xrightarrow{\mathrm{a}} q^{\prime}$ when $\left(q, \mathrm{a}, q^{\prime}\right) \in \rightarrow$.
The language of $q \in Q$ is $L_{A}(q)=\left\{a_{1} \cdots a_{n} \in \Sigma^{*}: q \xrightarrow{a_{1}} 0 \cdots \circ \xrightarrow{a_{n}} q^{\prime} \in F\right\}$

Expressions to automata

Definition

An automaton is a tuple $A=(Q, \rightarrow, I, F)$ where

- Q is a finite set of states; and
- $\rightarrow \subseteq Q \times \Sigma \times Q$ is the transition relation;
- $I \subseteq Q$ is the set of initial states

- $F \subseteq Q$ is the set of accepting states

We write $q \xrightarrow{\mathrm{a}} q^{\prime}$ when $\left(q, \mathrm{a}, q^{\prime}\right) \in \rightarrow$.
The language of $q \in Q$ is $L_{A}(q)=\left\{a_{1} \cdots a_{n} \in \Sigma^{*}: q \xrightarrow{a_{1}} 0 \cdots \circ \xrightarrow{a_{n}} q^{\prime} \in F\right\}$
The language of A is given by $\bigcup_{q \in I} L_{A}(q)$.

Expressions to automata

Lemma (c.f. Kleene 1956; Brzozowski 1964; Antimirov 1996)
For every e, we can construct an automaton A_{e} that accepts the language of e.

Automata to monoids

Let $A=(Q, \rightarrow, I, F)$ be an automaton.
Definition (Transition monoid; McNaughton and Papert 1968)
$\left(M_{A}, 0, \Delta\right)$ is the monoid where $M_{A}=\left\{\xrightarrow{a_{1}} 0 \cdots \circ \xrightarrow{\mathrm{a}_{n}}: \mathrm{a}_{1} \cdots \mathrm{a}_{n} \in \Sigma^{*}\right\}$.

Monoids to Kleene algebras

Lemma (Palka 2005)
Let $(M, \cdot, 1)$ be a monoid. $\operatorname{Now}\left(\mathcal{P}(M), \cup, \otimes,{ }^{\otimes}, \emptyset,\{1\}\right)$ is a $K A$, where

$$
T \otimes U=\{t \cdot u: t \in T \wedge u \in U\} \quad T^{\circledast}=\left\{t_{1} \cdots t_{n}: t_{1}, \ldots, t_{n} \in T\right\}
$$

Putting it all together

Given an expression e, we can now obtain a finite $K A K_{e}=\mathcal{P}\left(M_{A_{e}}\right)$.

Putting it all together

Given an expression e, we can now obtain a finite $K A K_{e}=\mathcal{P}\left(M_{A_{e}}\right)$.
Lemma
Let $e, f \in$ Exp. If $K_{e} \models e=f$ and $K_{f} \models e=f$, then $\models e=f$.

Putting it all together

Given an expression e, we can now obtain a finite $K A K_{e}=\mathcal{P}\left(M_{A_{e}}\right)$.
Lemma
Let $e, f \in$ Exp. If $K_{e} \models e=f$ and $K_{f} \models e=f$, then $\models e=f$.

Theorem (Finite model property)
If $\mathfrak{F} \models e=f$ then $\models e=f$.

Peeling the onion

Solving automata

Definition

Let (Q, \rightarrow, I, F) be an automaton. A solution is a function $s: Q \rightarrow \operatorname{Exp}$ such that

$$
F F(q)+\sum_{q^{\mathrm{a} \rightarrow q^{\prime}}} \mathrm{a} \cdot s\left(q^{\prime}\right) \leq s(q) \quad F(q)= \begin{cases}1 & q \in F \\ 0 & q \notin F\end{cases}
$$

Peeling the onion

Solving automata

Example

For the automaton on the right, a solution satisfies

$$
\begin{aligned}
& \models 1+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \leq s\left(q_{0}\right) \\
& \models 0+\mathrm{a} \cdot s\left(q_{1}\right)+\mathrm{b} \cdot s\left(q_{0}\right) \leq s\left(q_{1}\right)
\end{aligned}
$$

Peeling the onion

Solving automata

Example (Continued)

We start with the second condition:

$$
0+\mathrm{a} \cdot s\left(q_{1}\right)+\mathrm{b} \cdot s\left(q_{0}\right) \leq s\left(q_{1}\right)
$$

Peeling the onion

Solving automata

Example (Continued)

We start with the second condition:

$$
0+\mathrm{a} \cdot s\left(q_{1}\right)+\mathrm{b} \cdot s\left(q_{0}\right) \leq s\left(q_{1}\right)
$$

We can rewrite this as

$$
\mathrm{a} \cdot s\left(q_{1}\right)+\mathrm{b} \cdot s\left(q_{0}\right) \leq s\left(q_{1}\right)
$$

Peeling the onion

Solving automata

Example (Continued)

We start with the second condition:

$$
0+\mathrm{a} \cdot s\left(q_{1}\right)+\mathrm{b} \cdot s\left(q_{0}\right) \leq s\left(q_{1}\right)
$$

We can rewrite this as

$$
\mathrm{a} \cdot s\left(q_{1}\right)+\mathrm{b} \cdot s\left(q_{0}\right) \leq s\left(q_{1}\right)
$$

which by the fixpoint rule implies

$$
\mathrm{a}^{*} \cdot \mathrm{~b} \cdot s\left(q_{0}\right) \leq s\left(q_{1}\right)
$$

Peeling the onion

Solving automata

Example (Continued)

Now we look at the second condition

$$
1+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \leq s\left(q_{0}\right)
$$

Peeling the onion

Solving automata

Example (Continued)

Now we look at the second condition

$$
1+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \leq s\left(q_{0}\right)
$$

Substituting $\mathrm{a}^{*} \cdot \mathrm{~b} \cdot s\left(q_{0}\right) \leq s\left(q_{1}\right)$ we get

$$
1+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b} \cdot s\left(q_{0}\right) \leq s\left(q_{0}\right)
$$

Peeling the onion

Solving automata

Example (Continued)

Now we look at the second condition

$$
1+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \leq s\left(q_{0}\right)
$$

Substituting $\mathrm{a}^{*} \cdot \mathrm{~b} \cdot s\left(q_{0}\right) \leq s\left(q_{1}\right)$ we get

$$
1+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b} \cdot s\left(q_{0}\right) \leq s\left(q_{0}\right)
$$

which rewrites to

$$
1+\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b}\right) \cdot s\left(q_{0}\right) \leq s\left(q_{0}\right)
$$

Peeling the onion

Solving automata

Example (Continued)

Now we look at the second condition

$$
1+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \leq s\left(q_{0}\right)
$$

Substituting $\mathrm{a}^{*} \cdot \mathrm{~b} \cdot s\left(q_{0}\right) \leq s\left(q_{1}\right)$ we get

$$
1+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b} \cdot s\left(q_{0}\right) \leq s\left(q_{0}\right)
$$

which rewrites to

$$
1+\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b}\right) \cdot s\left(q_{0}\right) \leq s\left(q_{0}\right)
$$

By the fixpoint rule

$$
\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b}\right)^{*} \leq s\left(q_{0}\right)
$$

Peeling the onion

Solving automata

Example (Continued)

We now have two lower bounds:

$$
\begin{aligned}
\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b}\right)^{*} & \leq s\left(q_{0}\right) \\
\mathrm{a}^{*} \cdot \mathrm{~b} \cdot\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b}\right)^{*} & \leq s\left(q_{1}\right)
\end{aligned}
$$

Peeling the onion

Solving automata

Example (Continued)

We now have two lower bounds:

$$
\begin{aligned}
\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b}\right)^{*} & \leq s\left(q_{0}\right) \\
\mathrm{a}^{*} \cdot \mathrm{~b} \cdot\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b}\right)^{*} & \leq s\left(q_{1}\right)
\end{aligned}
$$

It turns these are also solutions to $A-$ thus we found the least solution.

Peeling the onion

Solving automata

Theorem (Kleene 1956; see also Conway 1971)
Every automaton admits a least solution (unique up to equivalence).

Peeling the onion

Solving automata

Theorem (Kleene 1956; see also Conway 1971)
Every automaton admits a least solution (unique up to equivalence).
When A is an automaton, we write

- $\bar{A}(q)$ for the least solution to A at q
- 【A〕 for the sum of $\bar{A}(q)$ for $q \in I$

Peeling the onion

Solving automata

Theorem (Kleene 1956; see also Conway 1971)

Every automaton admits a least solution (unique up to equivalence).
When A is an automaton, we write

- $\bar{A}(q)$ for the least solution to A at q
- 【A〕 for the sum of $\bar{A}(q)$ for $q \in I$

Lemma
If $e \in \operatorname{Exp}$, then $\vDash\left\lfloor A_{e}\right\rfloor \leq e$.

Peeling the onion

Solving monoids

Definition (Transition automaton; McNaughton and Papert 1968) Let $R \in M_{A}$. We write $A[R]$ for the transition automaton ($M_{A}, \rightarrow_{0},\{\Delta\},\{R\}$) where

$$
P \xrightarrow{a} \circ Q \Longleftrightarrow P \circ \xrightarrow{a}=Q
$$

Peeling the onion

Solving monoids

Definition (Transition automaton; McNaughton and Papert 1968) Let $R \in M_{A}$. We write $A[R]$ for the transition automaton ($M_{A}, \rightarrow_{0},\{\Delta\},\{R\}$) where

$$
P \xrightarrow{a} \circ Q \Longleftrightarrow P \circ \xrightarrow{a}=Q
$$

Intuition: $w \in L(A[R])$ means $q R q^{\prime}$ iff w traces from q to q^{\prime} in A.

Peeling the onion

Solving monoids

Lemma (Solving transition automata)
Let A be an automaton, let $q \in Q$ and let $R \in M_{A}$ with $q R q_{f} \in F$. We have

$$
\vDash\lfloor A[R]\rfloor \leq \bar{A}(q)
$$

Peeling the onion

Solving monoids

Lemma (Solving transition automata)
Let A be an automaton, let $q \in Q$ and let $R \in M_{A}$ with $q R q_{f} \in F$. We have

$$
\vDash\lfloor A[R]\rfloor \leq \bar{A}(q)
$$

Let $h_{e}: \Sigma \rightarrow K_{e}$ be given by $h_{e}(\mathrm{a})=\left\{{ }^{\mathrm{a}}{ }_{e}\right\}$.

Peeling the onion

Solving monoids

Lemma (Solving transition automata)
Let A be an automaton, let $q \in Q$ and let $R \in M_{A}$ with $q R q_{f} \in F$. We have

$$
\vDash\lfloor A[R]\rfloor \leq \bar{A}(q)
$$

Let $h_{e}: \Sigma \rightarrow K_{e}$ be given by $h_{e}(\mathrm{a})=\left\{{ }^{\mathrm{a}}{ }_{e}\right\}$.
Lemma
Let $e \in \operatorname{Exp}$ and let $R \in \widehat{h_{e}}(e)$. Then $\models \overline{A_{e}[R]} \leq e$.

Peeling the onion

Solving Kleene algebras

Let $h_{e}: \Sigma \rightarrow K_{e}$ be given by $h_{e}(\mathrm{a})=\left\{\stackrel{\mathrm{a}}{\rightarrow}^{e}\right\}$.

Peeling the onion

Solving Kleene algebras

Let $h_{e}: \Sigma \rightarrow K_{e}$ be given by $h_{e}(\mathrm{a})=\{\stackrel{\mathrm{a}}{e}\}$.
Lemma
Let e, $f \in$ Exp. We have that

$$
\vDash f \leq \sum_{R \in \widehat{h_{e}}(f)}\left\lfloor A_{e}[R]\right\rfloor
$$

Proof sketch.
By induction on f.

Peeling the onion

Proving the main lemma

Lemma
Let $e, f \in$ Exp. If $K_{e} \models e=f$ and $K_{f} \models e=f$, then $\models e=f$.

Proof.

Since $K_{e}=e=f$, we have that $\widehat{h_{e}}(e)=\widehat{h_{e}}(f)$; we can then derive

$$
\vDash f \leq \sum_{R \in \widehat{h_{e}}(f)}\left\lfloor A_{e}[R]\right\rfloor=\sum_{R \in \widehat{h_{e}}(e)}\left\lfloor A_{e}[R]\right\rfloor \leq e
$$

By a similar argument, $\models e \leq f$; the claim then follows.

Peeling the onion

The grand finale

Theorem

$$
\text { If } \mathfrak{F} \models e=f \text {, then } \models e=f \text {. }
$$

Proof.
Since K_{e} and K_{f} are finite KAs, we have that $K_{e} \models e=f$ and $K_{f} \models e=f$.

Peeling the onion

The grand finale

Theorem
If $\mathfrak{F} \models e=f$, then $\models e=f$.
Proof.
Since K_{e} and K_{f} are finite KAs, we have that $K_{e} \models e=f$ and $K_{f} \models e=f$.
The proof then follows by the previous lemma.

Some thoughts

- The proof uses Antimirov's instead of Brzozowski's construction.

Some thoughts

- The proof uses Antimirov's instead of Brzozowski's construction.
- We do not rely on bisimilarity-based arguments at all (c.f. Jacobs 2006).
- We do not use the right-handed axioms for the star:

$$
1+x \cdot x^{*}=x^{*} \quad \frac{x+y \cdot z \leq y}{x \cdot z^{*} \leq y}
$$

Some thoughts

- The proof uses Antimirov's instead of Brzozowski's construction.
- We do not rely on bisimilarity-based arguments at all (c.f. Jacobs 2006).
- We do not use the right-handed axioms for the star:

$$
1+x \cdot x^{*}=x^{*} \quad \frac{x+y \cdot z \leq y}{x \cdot z^{*} \leq y}
$$

- These were known not to be necessary

K Krob 1990; Boffa 1990; Das, Doumane, and Pous 2018; Kozen and Silva 2020

Some thoughts

- The proof uses Antimirov's instead of Brzozowski's construction.
- We do not rely on bisimilarity-based arguments at all (c.f. Jacobs 2006).
- We do not use the right-handed axioms for the star:

$$
1+x \cdot x^{*}=x^{*} \quad \frac{x+y \cdot z \leq y}{x \cdot z^{*} \leq y}
$$

- These were known not to be necessary

K Krob 1990; Boffa 1990; Das, Doumane, and Pous 2018; Kozen and Silva 2020

- Upshot: a proof-theoretic result for KA: "right-hand elimination".

Coq formalization

- All results formalized in the Coq proof assistant.

Coq formalization

- All results formalized in the Coq proof assistant.
- Trusted base:
- Calculus of Inductive Constructions.
- Streicher's axiom K.
- Dependent functional extensionality.

Coq formalization

- All results formalized in the Coq proof assistant.
- Trusted base:
- Calculus of Inductive Constructions.
- Streicher's axiom K.
- Dependent functional extensionality.
- Some concepts are encoded differently; ideas remain the same.

Further open questions

- Can we apply these ideas to guarded Kleene algebra with tests?

Further open questions

- Can we apply these ideas to guarded Kleene algebra with tests?
- Do these techniques extend to KA with hypotheses?

Further open questions

- Can we apply these ideas to guarded Kleene algebra with tests?
- Do these techniques extend to KA with hypotheses?
- Is there a representation theorem or duality for KA?

Further open questions

- Can we apply these ideas to guarded Kleene algebra with tests?
- Do these techniques extend to KA with hypotheses?
- Is there a representation theorem or duality for KA?
https://kap.pe/slides
https://kap.pe/papers

Bonus: extending the model theory

Lemma
If $\mathfrak{F} \mathfrak{R} \models e=f$, then $\models e=f$.

Bonus: extending the model theory

Lemma
If $\mathfrak{F R} \models e=f$, then $\models e=f$.
Proof sketch.
We show that $\mathfrak{F} \mathfrak{R} \vDash e=f$ implies $\mathcal{P}\left(\Sigma^{*}\right) \models e=f$. For $n \in \mathbb{N}$, choose

$$
\Sigma_{n}=\left\{w \in \Sigma^{*}:|w| \leq n\right\} \quad h_{n}: \Sigma \rightarrow \mathcal{R}\left(\Sigma_{n}\right), \mathrm{a} \mapsto\left\{(w, w \mathrm{a}): w \mathrm{a} \in \Sigma_{n}\right\}
$$

Bonus: extending the model theory

Lemma

If $\mathfrak{F} \mathfrak{R} \models e=f$, then $\models e=f$.
Proof sketch.
We show that $\mathfrak{F} \mathfrak{R} \vDash e=f$ implies $\mathcal{P}\left(\Sigma^{*}\right) \models e=f$. For $n \in \mathbb{N}$, choose

$$
\Sigma_{n}=\left\{w \in \Sigma^{*}:|w| \leq n\right\} \quad h_{n}: \Sigma \rightarrow \mathcal{R}\left(\Sigma_{n}\right), \mathrm{a} \mapsto\left\{(w, w \mathrm{a}): w \mathrm{a} \in \Sigma_{n}\right\}
$$

For all $w \in \Sigma_{n}$ and regular expressions g, we now have $w \in \widehat{\ell}(g)$ iff $(\epsilon, w) \in \widehat{h_{n}}(g)$.

Bonus: extending the model theory

Lemma

If $\mathfrak{F} \mathfrak{R} \models e=f$, then $\models e=f$.

Proof sketch.

We show that $\mathfrak{F} \mathfrak{R} \mid=e=f$ implies $\mathcal{P}\left(\Sigma^{*}\right) \models e=f$. For $n \in \mathbb{N}$, choose

$$
\Sigma_{n}=\left\{w \in \Sigma^{*}:|w| \leq n\right\} \quad h_{n}: \Sigma \rightarrow \mathcal{R}\left(\Sigma_{n}\right), \mathrm{a} \mapsto\left\{(w, w \mathrm{a}): w \mathrm{a} \in \Sigma_{n}\right\}
$$

For all $w \in \Sigma_{n}$ and regular expressions g, we now have $w \in \widehat{\ell}(g)$ iff $(\epsilon, w) \in \widehat{h_{n}}(g)$.
Thus $w \in \hat{\ell}(f)$ if and only if $w \in \widehat{h_{|w|}}(e)=\widehat{h_{|w|}}(f)$ if and only if $w \in \widehat{\ell}(f)$.

Bonus: extending the model theory

Lemma

If $\mathfrak{F} \mathfrak{R} \models e=f$, then $\models e=f$.

Proof sketch.

We show that $\mathfrak{F} \mathfrak{R} \mid=e=f$ implies $\mathcal{P}\left(\Sigma^{*}\right) \models e=f$. For $n \in \mathbb{N}$, choose

$$
\Sigma_{n}=\left\{w \in \Sigma^{*}:|w| \leq n\right\} \quad h_{n}: \Sigma \rightarrow \mathcal{R}\left(\Sigma_{n}\right), \mathrm{a} \mapsto\left\{(w, w \mathrm{a}): w \mathrm{a} \in \Sigma_{n}\right\}
$$

For all $w \in \Sigma_{n}$ and regular expressions g, we now have $w \in \widehat{\ell}(g)$ iff $(\epsilon, w) \in \widehat{h_{n}}(g)$.
Thus $w \in \hat{\ell}(f)$ if and only if $w \in \widehat{h_{|w|}}(e)=\widehat{h_{|w|}}(f)$ if and only if $w \in \widehat{\ell}(f)$.
This means that $\mathcal{P}\left(\Sigma^{*}\right), \ell \models e=f$, whence $\mathcal{P}\left(\Sigma^{*}\right) \models e=f$.

Bonus: pomsets

Expressions in concurrent $K A(C K A)$ are generated by

$$
e, f::=0|1| \mathrm{a} \in \Sigma|e+f| e \cdot f|e \| f| e^{*} \mid e^{\dagger}
$$

Bonus: pomsets

Expressions in concurrent $K A(C K A)$ are generated by

$$
e, f::=0|1| \mathrm{a} \in \Sigma|e+f| e \cdot f|e \| f| e^{*} \mid e^{\dagger}
$$

Definition (Bi-KA)

A bi-KA is a tuple $\left(K,+, \cdot, \|,{ }^{*},{ }^{\dagger}, 0,1\right)$ where

- $\left(K,+, \cdot,{ }^{*}\right)$ and $\left(K,+, \|,{ }^{\dagger}\right)$ are both KAs, and
- \| commutes, i.e., $K \models e\|f=f\| e$.

A weak bi-KA is a bi-KA without the ${ }^{\dagger}$.

Bonus: pomsets

Expressions in concurrent $K A(C K A)$ are generated by

$$
e, f::=0|1| a \in \Sigma|e+f| e \cdot f|e \| f| e^{*} \mid e^{\dagger}
$$

Definition (Bi-KA)

A bi-KA is a tuple $\left(K,+, \cdot, \|,{ }^{*},{ }^{\dagger}, 0,1\right)$ where

- $\left(K,+, \cdot,{ }^{*}\right)$ and $\left(K,+, \|,{ }^{\dagger}\right)$ are both KAs, and
- $\|$ commutes, i.e., $K \models e\|f=f\| e$.

A weak bi-KA is a bi-KA without the ${ }^{\dagger}$.

Definition (Concurrent KA)

A (weak) concurrent $K A$ is a (weak) bi-KA K satisfying

$$
(e \| g) \cdot(f \| h) \leq(e \cdot f) \|(g \cdot h)
$$

Bonus: pomsets

Example

The bi-KA of pomset languages over Σ is $\left(\mathcal{P}(\operatorname{Pom}(\Sigma)), \cup, \cdot, \|,{ }^{*},{ }^{\dagger}, \emptyset,\{1\}\right)$, where

- $\operatorname{Pom}(\Sigma)$ denotes the set of pomsets over Σ;
- 1 denotes the empty pomset;
- $L \cdot L^{\prime}=\left\{U \cdot V: U \in L, V \in L^{\prime}\right\}$ and similarly for $\|$; and
- $L^{*}=\{1\} \cup L \cup L \cdot L \cup \cdots$ and $L^{\dagger}=\{1\} \cup L \cup L \| L \cup \cdots$.

Bonus: pomsets

Example

The concurrent KA of pomset ideals over Σ is $\left(\mathcal{I}(\Sigma), \cup, \cdot, \|,{ }^{*},{ }^{\dagger}, \emptyset,\{1\}\right)$, where

- $\mathcal{I}(\Sigma)$ contains the pomset languages downward-closed under \sqsubseteq; and
- the operators are as for bi-KA, but followed by downward closure under \sqsubseteq.

Bonus: pomsets

Theorem (Laurence and Struth 2014)
Let e and f be (weak) concurrent $K A$ expressions.
Now $\mathcal{P}(\operatorname{Pom}(\Sigma)) \models e=f$ if and only if $K \models e=f$ for all (weak) bi-KAs K

Bonus: pomsets

Theorem (Laurence and Struth 2014)
Let e and f be (weak) concurrent KA expressions.
Now $\mathcal{P}(\operatorname{Pom}(\Sigma)) \models e=f$ if and only if $K \models e=f$ for all (weak) bi-KAs K

Theorem (Laurence and Struth 2017; K., Brunet, Silva, et al. 2018)
Let e and f be weak concurrent KA expressions.
Now $\mathcal{I}(\Sigma) \models e=f$ if and only if $K \models e=f$ for all weak CKAs K

Bonus: pomsets

Conjecture

Let e and f be concurrent $K A$ expressions.
Now $\mathcal{I}(\Sigma) \models e=f$ if and only if $K \models e=f$ for all CKAs K

Bonus: pomsets

Conjecture

Let e and f be concurrent $K A$ expressions.
Now $\mathcal{I}(\Sigma) \models e=f$ if and only if $K \models e=f$ for all CKAs K
Current techniques do not work!

Bonus: pomsets

<speculation>

Bonus: pomsets

The following roadmap might work:

Bonus: pomsets

The following roadmap might work:

1. Translate CKA expressions to automata
\Rightarrow Pomset automata (K., Brunet, Luttik, et al. 2019)
\Rightarrow or HDAs (van Glabbeek 2004; Fahrenberg 2005; Fahrenberg et al. 2022)

Bonus: pomsets

The following roadmap might work:

1. Translate CKA expressions to automata
\Rightarrow Pomset automata (K., Brunet, Luttik, et al. 2019)
\Rightarrow or HDAs (van Glabbeek 2004; Fahrenberg 2005; Fahrenberg et al. 2022)
2. Translate these automata to ordered bimonoids (Bloom and Ésik 1996)
\Rightarrow see also (Lodaya and Weil 2000; van Heerdt et al. 2021)

Bonus: pomsets

The following roadmap might work:

1. Translate CKA expressions to automata
\Rightarrow Pomset automata (K., Brunet, Luttik, et al. 2019)
\Rightarrow or HDAs (van Glabbeek 2004; Fahrenberg 2005; Fahrenberg et al. 2022)
2. Translate these automata to ordered bimonoids (Bloom and Ésik 1996)
\Rightarrow see also (Lodaya and Weil 2000; van Heerdt et al. 2021)
3. Translate bimonoids to concurrent KAs.
\Rightarrow essentially the same recipe?

Bonus: pomsets

</speculation>

References I

國 Anderson，Carolyn Jane et al．（2014）．＂NetKAT：semantic foundations for networks＂．In：POPL，pp．113－126．DOI：10．1145／2535838．2535862．
國 Antimirov，Valentin M．（1996）．＂Partial Derivatives of Regular Expressions and Finite Automaton Constructions＂．In：Theor．Comput．Sci．155．2，pp．291－319． DOI：10．1016／0304－3975（95）00182－4．
固 Bloom，Stephen L．and Zoltán Ésik（1996）．＂Free Shuffle Algebras in Language Varieties＂．In：Theor．Comput．Sci．163．1\＆2，pp．55－98．DOI： 10．1016／0304－3975（95）00230－8．
囲 Boffa，Maurice（1990）．＂Une remarque sur les systèmes complets d＇identités rationnelles＂．In：RAIRO Theor．Informatics Appl．24，pp．419－423．DOI： 10．1051／ita／1990240404191．
围 Brzozowski，Janusz A．（1964）．＂Derivatives of Regular Expressions＂．In：J．ACM 11．4，pp．481－494．DOI：10．1145／321239． 321249.
围 Conway，John Horton（1971）．Regular Algebra and Finite Machines．Chapman and Hall，Ltd．，London．

References II

EDas，Anupam，Amina Doumane，and Damien Pous（2018）．＂Left－Handed Completeness for Kleene algebra，via Cyclic Proofs＂．In：LPAR，pp．271－289．Doi： 10．29007／hzq3．
國 Fahrenberg，Uli（2005）．＂A Category of Higher－Dimensional Automata＂．In： FoSSaCS，pp．187－201．Doi：10．1007／978－3－540－31982－5＿12．
E Fahrenberg，Uli et al．（2022）．＂A Kleene Theorem for Higher－Dimensional Automata＂．In：CONCUR，29：1－29：18．Doi：10．4230／LIPIcs．CONCUR．2022．29．
围 Jacobs，Bart（2006）．＂A Bialgebraic Review of Deterministic Automata，Regular Expressions and Languages＂．In：Algebra，Meaning，and Computation，Essays Dedicated to Joseph A．Goguen on the Occasion of His 65th Birthday， pp．375－404．DOI：10．1007／11780274＿20．
冨 Kappé，Tobias，Paul Brunet，Bas Luttik，et al．（2019）．＂On series－parallel pomset languages：Rationality，context－freeness and automata＂．In：J．Log．Algebr．Meth． Program．103，pp．130－153．DOI：10．1016／j．jlamp．2018．12．001．

References III

Rappé，Tobias，Paul Brunet，Alexandra Silva，et al．（2018）．＂Concurrent Kleene Algebra：Free Model and Completeness＂．In：ESOP，pp．856－882．doi： 10．1007／978－3－319－89884－1＿30．
國 Kleene，Stephen C．（1956）．＂Representation of Events in Nerve Nets and Finite Automata＂．In：Automata Studies，pp．3－41．
国 Kozen，Dexter（1994）．＂A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events＂．In：Inf．Comput．110．2，pp．366－390．Doi： 10．1006／inco．1994．1037．
國 Kozen，Dexter and Maria－Christina Patron（2000）．＂Certification of Compiler Optimizations Using Kleene Algebra with Tests＂．In：CL，pp．568－582．DOI： 10．1007／3－540－44957－4＿38．
［－Kozen，Dexter and Alexandra Silva（2020）．＂Left－handed completeness＂．In：Theor． Comput．Sci．807，pp．220－233．DoI：10．1016／j．tcs．2019．10．040．
囦 Krob，Daniel（1990）．＂A Complete System of B－Rational Identities＂．In：ICALP， pp．60－73．DOI：10．1007／BFb0032022．

References IV

R－Laurence，Michael R．and Georg Struth（2014）．＂Completeness Theorems for Bi－Kleene Algebras and Series－Parallel Rational Pomset Languages＂．In：RAMiCS， pp．65－82．DOI：10．1007／978－3－319－06251－8＿5．
－（2017）．Completeness Theorems for Pomset Languages and Concurrent Kleene Algebras．arXiv：1705．05896．
围 Lodaya，Kamal and Pascal Weil（2000）．＂Series－parallel languages and the bounded－width property＂．In：Theor．Comp．Sci．237．1，pp．347－380．DOI： 10．1016／S0304－3975（00）00031－1．
囲 McNaughton，Robert and Seymour Papert（1968）．＂The syntactic monoid of a regular event＂．In：Algebraic Theory of Machines，Languages，and Semigroups， pp．297－312．
固 Palka，Ewa（2005）．＂On Finite Model Property of the Equational Theory of Kleene Algebras＂．In：Fundam．Informaticae 68．3，pp．221－230．URL：http： ／／content．iospress．com／articles／fundamenta－informaticae／fi68－3－02．

References V

围 Pratt，Vaughan R．（1980）．＂Dynamic Algebras and the Nature of Induction＂．In： STOC，pp．22－28．DOI：10．1145／800141．804649．
－Salomaa，Arto（1966）．＂Two Complete Axiom Systems for the Algebra of Regular Events＂．In：J．ACM 13．1，pp．158－169．DOI：10．1145／321312．321326．
目 Smolka，Steffen et al．（2015）．＂A fast compiler for NetKAT＂．In：ICFP， pp．328－341．DOI：10．1145／2784731．2784761．
－van Glabbeek，Rob J．（2004）．＂On the Expressiveness of Higher Dimensional Automata：（Extended Abstract）＂．In：EXPRESS，pp．5－34．DOI： 10．1016／j．entcs．2004．11．026．
围 van Heerdt，Gerco et al．（2021）．＂Learning Pomset Automata＂．In：FoSSaCS， pp．510－530．DOI：10．1007／978－3－030－71995－1＿26．

