
Formal Abstractions for
Packet Scheduling

A. Mohan, Y. Liu, N. Foster, T. Kappé, D. Kozen

Formal Abstractions for
Packet Scheduling

A. Mohan, Y. Liu, N. Foster, T. Kappé, D. Kozen
Has let me use

his slides!

2

Software-defined networking  
made networks programmable.

2

Software-defined networking  
made networks programmable.

We want control over

packet scheduling.

2

Software-defined networking  
made networks programmable.

We want control over

packet scheduling.

2

Software-defined networking  
made networks programmable.

We want control over

packet scheduling.

Basic tools work fine…

2

Software-defined networking  
made networks programmable.

We want control over

packet scheduling.

FIFO

Basic tools work fine…

2

Software-defined networking  
made networks programmable.

We want control over

packet scheduling.

FIFO

Basic tools work fine…

PIFO

…but modern scheduling  
requires more.

3

R traffic goes to either  
Pittsburgh or Toronto.

…but modern scheduling  
requires more.

3

Interleave R and B;

 interleave P and T.

R traffic goes to either  
Pittsburgh or Toronto.

Goal:

…but modern scheduling  
requires more.

3

R traffic goes to either  
Pittsburgh or Toronto.

…
==

… …
=

…=
Goal:

…but modern scheduling  
requires more.

3

R traffic goes to either  
Pittsburgh or Toronto.

…
==

… …
=

…=
Goal:

…but modern scheduling  
requires more.

3PIFO Tree

4PIFO Tree

New plan!

4PIFO Tree

 
 

Interleave .  
small, medium, and large  

packets.

New plan!

4PIFO Tree

 
 

Interleave .  
small, medium, and large  

packets.

New plan!

 S L M

= ==

No general way to deploy our gadget.

5

No general way to deploy our gadget.

A human needs a  
range of trees.

5

…

No general way to deploy our gadget.

The hardware wants  
to support one tree.

A human needs a  
range of trees.

5

…

No general way to deploy our gadget.

The hardware wants  
to support one tree.

A human needs a  
range of trees.

5

?…

No general way to deploy our gadget.

The hardware wants  
to support one tree.

A human needs a  
range of trees.

5

?…

No general way to deploy our gadget.

The hardware wants  
to support one tree.

A human needs a  
range of trees.

5

?… this work

No general way to deploy our gadget.

The hardware wants  
to support one tree.

A human needs a  
range of trees.

5

?…

this work

this work

6

Aside: PIFO Trees

Sivaraman et al. at SIGCOMM ’16

Review: FIFO
Just an ordered collection.

7

Review: FIFO
Just an ordered collection.
Two ways of interacting with the collection:

7

Review: FIFO
Just an ordered collection.
Two ways of interacting with the collection:

push

7

Review: FIFO
Just an ordered collection.
Two ways of interacting with the collection:

push

🍎

7

Review: FIFO
Just an ordered collection.
Two ways of interacting with the collection:

push

🍎🍋

7

Review: FIFO
Just an ordered collection.
Two ways of interacting with the collection:

push

🍎🍋

pop

7

Review: FIFO
Just an ordered collection.
Two ways of interacting with the collection:

push pop

🍎🍋

7

Review: FIFO
Just an ordered collection.
Two ways of interacting with the collection:

push pop

🍋

7

Review: FIFO
Just an ordered collection.
Two ways of interacting with the collection:

push pop

🍋

7

Review: priority queue

Everything from before holds, 
but we have a little more control.

8

Review: priority queue

Everything from before holds, 
but we have a little more control.

Say we have a queue prioritized by pH.

8

Review: priority queue

Everything from before holds, 
but we have a little more control.

🍎

Say we have a queue prioritized by pH.

8

Review: priority queue

Everything from before holds, 
but we have a little more control.

🍋

Say we have a queue prioritized by pH.

🍎

8

Review: priority queue

Everything from before holds, 
but we have a little more control.

🍋

Say we have a queue prioritized by pH.

🍎

8

Review: priority queue

Everything from before holds, 
but we have a little more control.

Say we have a queue prioritized by pH.

🍎

8

Review: priority queue

Everything from before holds, 
but we have a little more control.

🍎

Say we have a queue prioritized by pH.

8

Review: priority queue
The priority need not be inherent to the item!

9

Review: priority queue
The priority need not be inherent to the item!

9

We can have a ranking function:

Review: priority queue
The priority need not be inherent to the item!

🍋
9

We can have a ranking function:

Review: priority queue
The priority need not be inherent to the item!

🍋
9

We can have a ranking function:

Review: priority queue
The priority need not be inherent to the item!

🍎 🍋
9

We can have a ranking function:

Review: priority queue
The priority need not be inherent to the item!

🍎🍋
9

We can have a ranking function:

Review: priority queue
The priority need not be inherent to the item!

🍎🍎 🍋
9

We can have a ranking function:

Review: priority queue
The priority need not be inherent to the item!

🍎🍎🍋
9

We can have a ranking function:

Introducing: PIFO
Just a PQ, with a ranking function, 
but with rank-ties broken in FIFO order.

10

🍎🍎🍋

11

11

Baby goal:

interleave R and B.

11

A PIFO will suffice.

Baby goal:

interleave R and B.

11

A PIFO will suffice.

Bn, …, B1, (R,B)*

Baby goal:

interleave R and B.

11

A PIFO will suffice.

Bn, …, B1, (R,B)*
R

Baby goal:

interleave R and B.

11

A PIFO will suffice.

Bn, …, B1, (R,B)*
B

Baby goal:

interleave R and B.

11

A PIFO will suffice.

Bn, …, B1, (R,B)*

Baby goal:

interleave R and B.

11

A PIFO will suffice.

Bn, …, B1, (R,B)*
Rn, …, R1, (R,B)*

Baby goal:

interleave R and B.

11

A PIFO will suffice.

Bn, …, B1, (R,B)*
Rn, …, R1, (R,B)*

(R,B)*

Baby goal:

interleave R and B.

1212

1212

12

interleave R and B;

 interleave P and T.

Goal:

12

12

interleave R and B;

 interleave P and T.

Goal:

…
==

… …
=

…=
12

Goal: 
interleave R and B;

 interleave P and T.

13

Goal: 
interleave R and B;

 interleave P and T.

B3, B2, P2, B1, P1

13

Goal: 
interleave R and B;

 interleave P and T.

B3, B2, P2, B1, P1T1

13

Goal: 
interleave R and B;

 interleave P and T.

B3, B2, P2, B1, P1T1

B3, B2, P2, T1, B1, P1

13

Goal: 
interleave R and B;

 interleave P and T.

B3, B2, P2, B1, P1T1

B3, B2, P2, T1, B1, P1
B3, B2, P2, B1, T1, P1

13

Goal: 
interleave R and B;

 interleave P and T.

B3, B2, P2, B1, P1T1

B3, B2, P2, T1, B1, P1
B3, B2, P2, B1, T1, P1

13

B3, B2, P2, B1, P1T1

B3, B2, P2, T1, B1, P1

B3, B2, P2, B1, T1, P1

14

Goal: 
interleave R and B;

 interleave P and T.

B3, B2, P2, B1, P1T1

B3, B2, P2, T1, B1, P1

B3, B2, P2, B1, T1, P1

14

Goal: 
interleave R and B;

 interleave P and T.

B3, B2, P2, B1, P1T1

B3, B2, P2, T1, B1, P1

B3, B2, P2, B1, T1, P1

B3, P2, B2, T1, B1, P1

14

Goal: 
interleave R and B;

 interleave P and T.

B3, B2, P2, B1, P1T1

B3, B2, P2, T1, B1, P1

B3, B2, P2, B1, T1, P1

B3, P2, B2, T1, B1, P1

14

Goal: 
interleave R and B;

 interleave P and T.

B3, B2, P2, B1, P1T1

B3, B2, P2, T1, B1, P1

B3, B2, P2, B1, T1, P1

B3, P2, B2, T1, B1, P1

14

Goal: 
interleave R and B;

 interleave P and T.

B3, B2, P2, B1, P1T1

B3, B2, P2, T1, B1, P1

B3, B2, P2, B1, T1, P1

B3, P2, B2, T1, B1, P1

14

Goal: 
interleave R and B;

 interleave P and T.

Enqueueing a packet can
require the reordering of
buffered packets.

No PIFO can do this.

15

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

 2, 2, 1, 2

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

 2, 2, 1, 2

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

 2, 2, 1, 2

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

 2, 2, 1, 2

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

 2, 2, 1

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

 2, 2, 1

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

 2, 2, 1

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

How do we pop it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

16

How do we pop it?
How do we push into it?

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1 B3, B2, B1

push T1

B3, B2, P2, B1, P1

1 2 1 2

 2, 2, 1, 2, 1

 P2, P1

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1 B3, B2, B1

push T1

B3, B2, P2, B1, P1

1 2 1 2

 2, 2, 1, 2, 1

 P2, P1

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1

1 2 1 2

T1,

 2, 2, 1, 2, 1

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1

1 2 1 2

T1,

 2, 2, 1, 2, 1

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1

1 2 1 2

T1,

1,

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1 B3, P2, B2, T1, B1, P1

1 2 1 2

T1,

1,

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1 B3, P2, B2, T1, B1, P1

1 2 1 2

T1,

1,

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1 B3, P2, B2, T1, B1, P1

1 2 1 2

T1,

1,

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1 B3, P2, B2, T1, B1, P1

1 2 1 2

T1,

1,

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1 B3, P2, B2, T1, B1, P1

1 2 1 2

T1,

1,

16

 
Interleave R and B;

 interleave P and T.

Introducing: PIFO trees

17

interleave R and B;

 interleave P and T.

Goal:

…
==

… …
=

…=
17

17

interleave R and B;

 interleave P and T.

Goal:

…
==

… …
=

…=
17 PIFO Tree

18

Aside: PIFO Trees

Sivaraman et al. at SIGCOMM ’16

19

Key Insight

…………….

……………………

1 2

19

Key Insight

…………….

……………………

1 2

A PIFO tree manifests a
programming language.

19

Key Insight

…………….

……………………

1 2

A PIFO tree manifests a
programming language.

A program is precisely a 
scheduling algorithm.

19

Key Insight

…………….

……………………

1 2

A PIFO tree manifests a
programming language.

A program is precisely a 
scheduling algorithm.

B1

19

Key Insight

…………….

……………………

1 2

A PIFO tree manifests a
programming language.

A program is precisely a 
scheduling algorithm.

B1

Path: [(2,),(B1,)]r1 r2

19

Key Insight

…………….

……………………

1 2

A PIFO tree manifests a
programming language.

A program is precisely a 
scheduling algorithm.

B1

Path: [(2,),(B1,)]r1 r2

2

19

Key Insight

…………….

……………………

1 2

A PIFO tree manifests a
programming language.

A program is precisely a 
scheduling algorithm.

B1

Path: [(2,),(B1,)]r1 r2

2

B1

19

Key Insight

…………….

……………………

1 2

A PIFO tree manifests a
programming language.

tree  
shape

language
expressivity

A program is precisely a 
scheduling algorithm.

B1

Path: [(2,),(B1,)]r1 r2

2

B1

20

Which leads to some very PL-ey questions:

tree  
shape

language
expressivity

20

Which leads to some very PL-ey questions:

tree  
shape

language
expressivity

Compare expressivity of languages?

20

Which leads to some very PL-ey questions:

tree  
shape

language
expressivity

Compare expressivity of languages?
Compare expressivity of trees? 

20

Which leads to some very PL-ey questions:

tree  
shape

language
expressivity

Compare expressivity of languages?
Compare expressivity of trees? 

Compile a program so it runs against a new tree?

The hardware wants  
to support one tree.

A human needs a  
range of trees.

21

…

No general way to deploy our gadget.

The hardware wants  
to support one tree.

A human needs a  
range of trees.

21

…

No general way to deploy our gadget.

some
sufficiently  

expressive tree

The hardware wants  
to support one tree.

A human needs a  
range of trees.

21

…

No general way to deploy our gadget.

some
sufficiently  

expressive tree

compilation

22

Contributions

Formal model of PIFO trees

22

Contributions

Formal model of PIFO trees

22

General theorems of expressiveness 
w.r.t. tree shape

Contributions

Formal model of PIFO trees

22

Compiler

General theorems of expressiveness 
w.r.t. tree shape

Contributions

Formal model of PIFO trees

22

Simulator
Compiler

General theorems of expressiveness 
w.r.t. tree shape

Contributions

Expressivity of trees

Trees with more leaves are more expressive.

Taller trees are more expressive.

23

Expressivity of trees

Homomorphic embedding. 
Map root to root, leaves to leaves. Respect ancestry.

Trees with more leaves are more expressive.

Taller trees are more expressive.

23

Captured elegantly by:

Expressivity of trees

Homomorphic embedding. 
Map root to root, leaves to leaves. Respect ancestry.

23

so
ur

ce

ta
rg

et

Expressivity of trees

Homomorphic embedding. 
Map root to root, leaves to leaves. Respect ancestry.

23

so
ur

ce

ta
rg

et

Expressivity of trees

Homomorphic embedding. 
Map root to root, leaves to leaves. Respect ancestry.

23

so
ur

ce

ta
rg

et

Compiling programs

…

…

24

…

…

…

…

 1 2 3
1 2

1 2

Compiling programs

…

…

24

…

…

…

…

 1 2 3
= == 1 2

1 2

Compiling programs

…

…

24

…

…

…

…

⅓ ⅔

1 2 3
= == 1 2

1 2

Compiling programs

…

…

24

…

…

…

…

⅓ ⅔

1 2 3
= == 1 2

1 2==

Compiling programs

…

…

24

…

…

…

…

⅓ ⅔

1 2 3
= == 1 2

1 2==

Compiling programs

…

…

24

…

…

…

…

⅓ ⅔

1 2 3
= == 1 2

1 2==

Compiling programs

…

…

24

…

…

…

…

 1 2 3
= == 1 2

1 2

Compiling programs

…

…

24

…

…

…

…

 1 2 3
= == 1 2

1 2

rootroot

Compiling programs

…

…

24

…

…

…

…

 1 2 3
= == 1 2

1 2

transient

rootroot

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

= ==

…

…

2

…

2

1

21

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

= ==

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

21

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

= ==

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

= ==

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

= ==

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B

= ==

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

21

 1, 2, 1, 2, 2, 1, 2, 2

Path: [(2, ?), (1, ?), …]

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

21

 1, 2, 1, 2, 2, 1, 2, 2

Path: [(2, ?), (1, ?), …]Path: [(2,), (1,), …]r1 r1

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

21

 1, 2, 1, 2, 2, 1, 2, 2 1, 2, 2, 1, 2, 2, 1, 2, 2

Path: [(2, ?), (1, ?), …]Path: [(2,), (1,), …]r1 r1

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

 1, 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2 1, 2, 2, 1, 2, 2, 1, 2, 2

Path: [(2, ?), (1, ?), …]Path: [(2,), (1,), …]r1 r1

Compiling programs

25

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

 1, 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2 1, 2, 2, 1, 2, 2, 1, 2, 2

Path: [(2, ?), (1, ?), …]Path: [(2,), (1,), …]r1 r1

25

Given an embedding, we lift  
it to arrive at a compiler.

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

 1, 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2 1, 2, 2, 1, 2, 2, 1, 2, 2

Path: [(2, ?), (1, ?), …]Path: [(2,), (1,), …]r1 r1

Generating embeddings automatically!

26

Generating embeddings automatically!

Homomorphic embedding. 
Map root to root, leaves to leaves. Respect ancestry.

26

Generating embeddings automatically!

Homomorphic embedding. 
Map root to root, leaves to leaves. Respect ancestry.

26

Two new algorithms,  
both starting with heterogeneous source trees.

Generating embeddings automatically!

Homomorphic embedding. 
Map root to root, leaves to leaves. Respect ancestry.

26

Two new algorithms,  
both starting with heterogeneous source trees.

1. If target tree is regular d-ary for some d.

Generating embeddings automatically!

Homomorphic embedding. 
Map root to root, leaves to leaves. Respect ancestry.

26

Two new algorithms,  
both starting with heterogeneous source trees.

1. If target tree is regular d-ary for some d.
2. If target tree is itself heterogeneous.

Workflow

27

Workflow

27

logical

Workflow

27

But the hardware supports 
a regular-branching binary tree.

logical

Workflow

27

But the hardware supports 
a regular-branching binary tree.

logical

Here’s how I’ll use that tree.

Workflow

27

logical

Here’s how I’ll use that tree.

Workflow

27

logical

actual

27

logical

actual

Simulation

27

logical

actual

Simulation

27

logical

actual

Simulation

Underlying formalism

28

Path PIFOTreePIFOTree

Topo

Topo

Topo

Topo

29

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

29

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

Let the human 
program against some tree.

29

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

Let the human 
program against some tree.

29

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

Let the human 
program against some tree.

Compilable?

29

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

Let the human 
program against some tree.

Compilable?

29

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

Let the human 
program against some tree.

Compilable?

29

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

30

Let the human 
program against some tree.

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

30

Let the human 
program against some tree.

Compilable?

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

30

Let the human 
program against some tree.

Compilable?

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

30

Let the human 
program against some tree.

Compilable?

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

31

Let the human 
program against some tree.

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

31

Let the human 
program against some tree.

Compilable?

A general way to deploy PIFO trees.

Let the hardware  
support some tree.

31

Let the human 
program against some tree.

Compilable?

A general way to deploy PIFO trees.

Formal Abstractions for
Packet Scheduling
Mohan, Liu, Foster, Kappé, Kozen

cs.cornell.edu/~amohan

