Kleene Algebra - Lecture 5

ESSLLI 2023

Last lecture

- We built a method to convert automata to expressions.

Last lecture

- We built a method to convert automata to expressions.
- Along the way, we developed some linear algebra over expressions.

Today's lecture

Finally: the completeness proof.

Today's lecture

Finally: the completeness proof.
Three crucial insights:

Today's lecture

Finally: the completeness proof.
Three crucial insights:

1. Bisimilar states yield provably equivalent expressions.

Today's lecture

Finally: the completeness proof.
Three crucial insights:

1. Bisimilar states yield provably equivalent expressions.
2. Going from expressions to automata and back preserves equivalence.

Today's lecture

Finally: the completeness proof.
Three crucial insights:

1. Bisimilar states yield provably equivalent expressions.
2. Going from expressions to automata and back preserves equivalence.
3. Relation between solutions of an automaton and its powerset automaton.

Matrices and bisimulations

Definition

Let S_{1} and S_{2}. An S_{1}-by- S_{2} matrix is a function $M: S_{1} \times S_{2} \rightarrow \mathbb{E}$.

Matrices and bisimulations

Definition

Let S_{1} and S_{2}. An S_{1}-by- S_{2} matrix is a function $M: S_{1} \times S_{2} \rightarrow \mathbb{E}$.
Let M be an S_{1}-by- S_{2} matrix, and N an S_{2}-by- S_{3} matrix.

Matrices and bisimulations

Definition

Let S_{1} and S_{2}. An S_{1}-by- S_{2} matrix is a function $M: S_{1} \times S_{2} \rightarrow \mathbb{E}$.
Let M be an S_{1}-by- S_{2} matrix, and N an S_{2}-by- S_{3} matrix.
Now $M \cdot N$ is the S_{1}-by- S_{3} matrix where

$$
(M \cdot N)\left(s_{1}, s_{3}\right)=\sum_{s_{2} \in S_{2}} M\left(s_{1}, s_{2}\right) \cdot N\left(s_{2}, s_{3}\right)
$$

Matrices and bisimulations

Definition

Let S_{1} and S_{2}. An S_{1}-by- S_{2} matrix is a function $M: S_{1} \times S_{2} \rightarrow \mathbb{E}$.
Let M be an S_{1}-by- S_{2} matrix, and N an S_{2}-by- S_{3} matrix.
Now $M \cdot N$ is the S_{1}-by- S_{3} matrix where

$$
(M \cdot N)\left(s_{1}, s_{3}\right)=\sum_{s_{2} \in S_{2}} M\left(s_{1}, s_{2}\right) \cdot N\left(s_{2}, s_{3}\right)
$$

If b is an S_{2}-vector, then $M \cdot b$ is the S_{1}-vector given by

$$
(M \cdot b)\left(s_{1}\right)=\sum_{s_{2} \in S_{2}} M\left(s_{1}, s_{2}\right) \cdot b\left(s_{2}\right)
$$

Matrices and bisimulations

Definition

Let S_{1} and S_{2}. An S_{1}-by- S_{2} matrix is a function $M: S_{1} \times S_{2} \rightarrow \mathbb{E}$.
Let M be an S_{1}-by- S_{2} matrix, and N an S_{2}-by- S_{3} matrix.
Now $M \cdot N$ is the S_{1}-by- S_{3} matrix where

$$
(M \cdot N)\left(s_{1}, s_{3}\right)=\sum_{s_{2} \in S_{2}} M\left(s_{1}, s_{2}\right) \cdot N\left(s_{2}, s_{3}\right)
$$

If b is an S_{2}-vector, then $M \cdot b$ is the S_{1}-vector given by

$$
(M \cdot b)\left(s_{1}\right)=\sum_{s_{2} \in S_{2}} M\left(s_{1}, s_{2}\right) \cdot b\left(s_{2}\right)
$$

We write M^{T} for the transpose of M, i.e., the S_{2}-by- S_{1} matrix where

$$
M^{T}\left(s_{2}, s_{1}\right)=M\left(s_{1}, s_{2}\right)
$$

Matrices and bisimulations

Definition

Let S_{1} and S_{2} be sets, and let $R \subseteq S_{1} \times S_{2}$ be a relation between S_{1} and S_{2}.
We write M_{R} for the matrix given by $M\left(s_{1}, s_{2}\right)=\left[\begin{array}{ll}s_{1} & R \\ s_{2}\end{array}\right]$.

Matrices and bisimulations

Definition

Let S_{1} and S_{2} be sets, and let $R \subseteq S_{1} \times S_{2}$ be a relation between S_{1} and S_{2}.
We write M_{R} for the matrix given by $M\left(s_{1}, s_{2}\right)=\left[\begin{array}{ll}s_{1} R & s_{2}\end{array}\right]$.
Lemma
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let $R \subseteq Q_{0} \times Q_{1}$ be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot b_{A_{0}} \leqq b_{A_{1}}$.

Matrices and bisimulations

Definition

Let S_{1} and S_{2} be sets, and let $R \subseteq S_{1} \times S_{2}$ be a relation between S_{1} and S_{2}.
We write M_{R} for the matrix given by $M\left(s_{1}, s_{2}\right)=\left[\begin{array}{ll}s_{1} R & s_{2}\end{array}\right]$.
Lemma
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let $R \subseteq Q_{0} \times Q_{1}$ be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot b_{A_{0}} \leqq b_{A_{1}}$.
Proof.
This comes down to showing that

$$
\forall q_{1} \in Q_{1} \cdot \sum_{q_{0} \in Q_{0}} M_{R}^{T}\left(q_{1}, q_{0}\right) \cdot b_{A_{0}}\left(q_{0}\right) \leqq b_{A_{1}}\left(q_{1}\right)
$$

Matrices and bisimulations

Definition

Let S_{1} and S_{2} be sets, and let $R \subseteq S_{1} \times S_{2}$ be a relation between S_{1} and S_{2}.
We write M_{R} for the matrix given by $M\left(s_{1}, s_{2}\right)=\left[\begin{array}{ll}s_{1} R & s_{2}\end{array}\right]$.
Lemma
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let $R \subseteq Q_{0} \times Q_{1}$ be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot b_{A_{0}} \leqq b_{A_{1}}$.
Proof.
This comes down to showing that

$$
\forall q_{1} \in Q_{1}, q_{0} \in Q_{0} \cdot M_{R}^{T}\left(q_{1}, q_{0}\right) \cdot b_{A_{0}}\left(q_{0}\right) \leqq b_{A_{1}}\left(q_{1}\right)
$$

Matrices and bisimulations

Definition

Let S_{1} and S_{2} be sets, and let $R \subseteq S_{1} \times S_{2}$ be a relation between S_{1} and S_{2}.
We write M_{R} for the matrix given by $M\left(s_{1}, s_{2}\right)=\left[\begin{array}{ll}s_{1} R & s_{2}\end{array}\right]$.
Lemma
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let $R \subseteq Q_{0} \times Q_{1}$ be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot b_{A_{0}} \leqq b_{A_{1}}$.
Proof.
This comes down to showing that

$$
\forall q_{0} \in Q_{0}, q_{1} \in Q_{1} \cdot\left[q_{0} R q_{1}\right] \cdot\left[q_{0} \in F_{0}\right] \leqq\left[q_{1} \in F_{1}\right]
$$

Matrices and bisimulations

Lemma
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$.

Matrices and bisimulations

Lemma

Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$.
Proof.
The claim works out to be equivalent to

$$
\forall q_{1} \in Q_{1}, q_{0} \in Q_{0} . \sum_{q_{0}^{\prime} \in Q_{0}} M_{R}^{T}\left(q_{1}, q_{0}^{\prime}\right) \cdot M_{A_{0}}\left(q_{0}^{\prime}, q_{0}\right) \leqq \sum_{q_{1}^{\prime} \in Q_{1}} M_{A_{1}}\left(q_{1}, q_{1}^{\prime}\right) \cdot M_{R}^{T}\left(q_{1}^{\prime}, q_{0}\right)
$$

Matrices and bisimulations

Lemma

Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$.
Proof.
The claim works out to be equivalent to

$$
\forall q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0} \cdot M_{R}^{T}\left(q_{1}, q_{0}^{\prime}\right) \cdot M_{A_{0}}\left(q_{0}^{\prime}, q_{0}\right) \leqq \sum_{q_{1}^{\prime} \in Q_{1}} M_{A_{1}}\left(q_{1}, q_{1}^{\prime}\right) \cdot M_{R}^{T}\left(q_{1}^{\prime}, q_{0}\right)
$$

Matrices and bisimulations

Lemma

Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$.
Proof.
The claim works out to be equivalent to

$$
\forall q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0} \cdot\left[q_{0}^{\prime} R q_{1}\right] \cdot M_{A_{0}}\left(q_{0}^{\prime}, q_{0}\right) \leqq \sum_{q_{1}^{\prime} \in Q_{1}} M_{A_{1}}\left(q_{1}, q_{1}^{\prime}\right) \cdot\left[q_{0} R q_{1}^{\prime}\right]
$$

Matrices and bisimulations

Lemma

Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$.
Proof.
The claim works out to be equivalent to

$$
\forall q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0} \cdot\left[q_{0}^{\prime} R q_{1}\right] \cdot\left(\sum_{q_{0}^{\prime} \xrightarrow{\mathrm{a}} q_{0}} \mathrm{a}\right) \leqq \sum_{q_{1}^{\prime} \in Q_{1}}\left(\sum_{q_{1} \xrightarrow{\mathrm{a}} q_{1}^{\prime}} \mathrm{a}\right) \cdot\left[q_{0} R q_{1}^{\prime}\right]
$$

Matrices and bisimulations

Lemma

Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$.
Proof.
The claim works out to be equivalent to

$$
\forall q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0} . \quad \sum_{q_{0}^{\prime} \xrightarrow{\mathrm{a}} q_{0}}\left[q_{0}^{\prime} R q_{1}\right] \cdot \mathrm{a} \leqq \sum_{q_{1} \xrightarrow{\mathrm{a}} q_{1}^{\prime}} \mathrm{a} \cdot\left[q_{0} R q_{1}^{\prime}\right]
$$

Matrices and bisimulations

Lemma

Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$.
Proof.
The claim works out to be equivalent to

$$
\forall q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0} . \quad \sum_{q_{0}^{\prime} \xrightarrow{\mathrm{a}} q_{0}}\left[q_{0}^{\prime} R q_{1}\right] \cdot \mathrm{a} \leqq \sum_{q_{1} \xrightarrow{\mathrm{a}} q_{1}^{\prime}} \mathrm{a} \cdot\left[q_{0} R q_{1}^{\prime}\right]
$$

Suppose $q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0}$ such that $q_{0}^{\prime} \xrightarrow{a} q_{0}$ and $q_{0}^{\prime} R q_{1}$.

Matrices and bisimulations

Lemma

Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$.
Proof.
The claim works out to be equivalent to

$$
\forall q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0} . \quad \sum_{q_{0}^{\prime} \xrightarrow{\mathrm{a}} q_{0}}\left[q_{0}^{\prime} R q_{1}\right] \cdot \mathrm{a} \leqq \sum_{q_{1} \xrightarrow{\mathrm{a}} q_{1}^{\prime}} \mathrm{a} \cdot\left[q_{0} R q_{1}^{\prime}\right]
$$

Suppose $q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0}$ such that $q_{0}^{\prime} \xrightarrow{a} q_{0}$ and $q_{0}^{\prime} R q_{1}$.
Then there exists q_{1}^{\prime} such that $q_{1} \xrightarrow{\mathrm{a}} q_{1}^{\prime}$ and $q_{1} R q_{1}^{\prime}$.

Matrices and bisimulations

Lemma

Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$.
Proof.
The claim works out to be equivalent to

$$
\forall q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0} . \quad \sum_{q_{0}^{\prime} \xrightarrow{\mathrm{a}} q_{0}}\left[q_{0}^{\prime} R q_{1}\right] \cdot \mathrm{a} \leqq \sum_{q_{1} \xrightarrow{\mathrm{a}} q_{1}^{\prime}} \mathrm{a} \cdot\left[q_{0} R q_{1}^{\prime}\right]
$$

Suppose $q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0}$ such that $q_{0}^{\prime} \xrightarrow{\mathrm{a}} q_{0}$ and $q_{0}^{\prime} R q_{1}$.
Then there exists q_{1}^{\prime} such that $q_{1} \xrightarrow{\text { a }} q_{1}^{\prime}$ and $q_{1} R q_{1}^{\prime}$. Thus a $\cdot\left[q_{0} R q_{1}^{\prime}\right]$ is a term in the sum on the right.

Matrices and bisimulations

Lemma

Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$.
Proof.
The claim works out to be equivalent to

$$
\forall q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0} . \quad \sum_{q_{0}^{\prime} \xrightarrow{\mathrm{a}} q_{0}}\left[q_{0}^{\prime} R q_{1}\right] \cdot \mathrm{a} \leqq \sum_{q_{1} \xrightarrow{\mathrm{a}} q_{1}^{\prime}} \mathrm{a} \cdot\left[q_{0} R q_{1}^{\prime}\right]
$$

Suppose $q_{1} \in Q_{1}, q_{0}, q_{0}^{\prime} \in Q_{0}$ such that $q_{0}^{\prime} \xrightarrow{a} q_{0}$ and $q_{0}^{\prime} R q_{1}$.
Then there exists q_{1}^{\prime} such that $q_{1} \xrightarrow{\mathrm{a}} q_{1}^{\prime}$ and $q_{1} R q_{1}^{\prime}$. Thus a $\cdot\left[q_{0} R q_{1}^{\prime}\right]$ is a term in the sum on the right. Since $\left[q_{0} R q_{1}^{\prime}\right] \cdot \mathrm{a} \equiv \mathrm{a} \cdot\left[q_{0}^{\prime} R q_{1}\right]$, we are done.

Matrices and bisimulations

Corollary
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}}^{*} \leqq M_{A_{1}}^{*} \cdot M_{R}^{T}$.
Proof sketch.
In KA, if $e \cdot f \leqq g \cdot e$, then $e \cdot f^{*} \leqq g^{*} \cdot e$ (see exercises).

Matrices and bisimulations

Corollary

Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}}^{*} \leqq M_{A_{1}}^{*} \cdot M_{R}^{T}$.
Proof sketch.
In KA, if $e \cdot f \leqq g \cdot e$, then $e \cdot f^{*} \leqq g^{*} \cdot e$ (see exercises).
Recall that and $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$ by the last lemma.

Matrices and bisimulations

Corollary

Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Furthermore, let R be a simulation of A_{0} by A_{1}.
Then $M_{R}^{T} \cdot M_{A_{0}}^{*} \leqq M_{A_{1}}^{*} \cdot M_{R}^{T}$.
Proof sketch.
In KA, if $e \cdot f \leqq g \cdot e$, then $e \cdot f^{*} \leqq g^{*} \cdot e$ (see exercises).
Recall that and $M_{R}^{T} \cdot M_{A_{0}} \leqq M_{A_{1}} \cdot M_{R}^{T}$ by the last lemma.
Matrices over KA follow the laws of KA, so the claim follows.

Matrices and bisimulations

Theorem
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Also, let R be a simulation of A_{0} by A_{1}.
Finally, let $e_{0}=\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}\right)$ and $e_{1}=\left(M_{A_{1}}^{*} \cdot b_{A_{1}}\right)\left(q_{1}\right)$.
If $q_{0} R q_{1}$, then $e_{0} \leqq e_{1}$.

Matrices and bisimulations

Theorem
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Also, let R be a simulation of A_{0} by A_{1}.
Finally, let $e_{0}=\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}\right)$ and $e_{1}=\left(M_{A_{1}}^{*} \cdot b_{A_{1}}\right)\left(q_{1}\right)$.
If $q_{0} R q_{1}$, then $e_{0} \leqq e_{1}$.
Proof.
Derive as follows:

$$
e_{0}=\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}\right)
$$

Matrices and bisimulations

Theorem
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Also, let R be a simulation of A_{0} by A_{1}.
Finally, let $e_{0}=\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}\right)$ and $e_{1}=\left(M_{A_{1}}^{*} \cdot b_{A_{1}}\right)\left(q_{1}\right)$.
If $q_{0} R q_{1}$, then $e_{0} \leqq e_{1}$.
Proof.
Derive as follows:

$$
e_{0} \equiv\left[\begin{array}{lll}
q_{0} & R & q_{1}
\end{array}\right] \cdot\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}\right)
$$

Matrices and bisimulations

Theorem
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Also, let R be a simulation of A_{0} by A_{1}.
Finally, let $e_{0}=\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}\right)$ and $e_{1}=\left(M_{A_{1}}^{*} \cdot b_{A_{1}}\right)\left(q_{1}\right)$.
If $q_{0} R q_{1}$, then $e_{0} \leqq e_{1}$.
Proof.
Derive as follows:

$$
e_{0} \leqq \sum_{q_{0}^{\prime} \in Q_{0}}\left[q_{0}^{\prime} R q_{1}\right] \cdot\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}^{\prime}\right)
$$

Matrices and bisimulations

Theorem
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Also, let R be a simulation of A_{0} by A_{1}.
Finally, let $e_{0}=\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}\right)$ and $e_{1}=\left(M_{A_{1}}^{*} \cdot b_{A_{1}}\right)\left(q_{1}\right)$.
If $q_{0} R q_{1}$, then $e_{0} \leqq e_{1}$.
Proof.
Derive as follows:

$$
e_{0} \leqq \sum_{q_{0}^{\prime} \in Q_{0}} M_{R}^{T}\left(q_{1}, q_{0}^{\prime}\right) \cdot\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}^{\prime}\right)
$$

Matrices and bisimulations

Theorem
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Also, let R be a simulation of A_{0} by A_{1}.
Finally, let $e_{0}=\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}\right)$ and $e_{1}=\left(M_{A_{1}}^{*} \cdot b_{A_{1}}\right)\left(q_{1}\right)$.
If $q_{0} R q_{1}$, then $e_{0} \leqq e_{1}$.
Proof.
Derive as follows:

$$
e_{0} \leqq\left(M_{R}^{T} \cdot M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{1}\right)
$$

Matrices and bisimulations

Theorem
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Also, let R be a simulation of A_{0} by A_{1}.
Finally, let $e_{0}=\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}\right)$ and $e_{1}=\left(M_{A_{1}}^{*} \cdot b_{A_{1}}\right)\left(q_{1}\right)$.
If $q_{0} R q_{1}$, then $e_{0} \leqq e_{1}$.
Proof.
Derive as follows:

$$
e_{0} \leqq\left(M_{A_{1}}^{*} \cdot M_{R}^{T} \cdot b_{A_{0}}\right)\left(q_{1}\right)
$$

Matrices and bisimulations

Theorem
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Also, let R be a simulation of A_{0} by A_{1}.
Finally, let $e_{0}=\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}\right)$ and $e_{1}=\left(M_{A_{1}}^{*} \cdot b_{A_{1}}\right)\left(q_{1}\right)$.
If $q_{0} R q_{1}$, then $e_{0} \leqq e_{1}$.
Proof.
Derive as follows:

$$
e_{0} \leqq\left(M_{A_{1}}^{*} \cdot b_{A_{1}}\right)\left(q_{1}\right)
$$

Matrices and bisimulations

Theorem
Let $A_{i}=\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ be an automaton for $i \in\{0,1\}$.
Also, let R be a simulation of A_{0} by A_{1}.
Finally, let $e_{0}=\left(M_{A_{0}}^{*} \cdot b_{A_{0}}\right)\left(q_{0}\right)$ and $e_{1}=\left(M_{A_{1}}^{*} \cdot b_{A_{1}}\right)\left(q_{1}\right)$.
If $q_{0} R q_{1}$, then $e_{0} \leqq e_{1}$.
Proof.
Derive as follows:

$$
e_{0} \leqq\left(M_{A_{1}}^{*} \cdot b_{A_{1}}\right)\left(q_{1}\right)=e_{1}
$$

The round-trip theorem — left-to-right

Let $e \in \mathbb{E}$. We write $K(e)$ for $\left(M_{A_{e}}^{*} \cdot b_{e}\right)(e)$.

The round-trip theorem — left-to-right

Let $e \in \mathbb{E}$. We write $K(e)$ for $\left(M_{A_{e}}^{*} \cdot b_{e}\right)(e)$.
Lemma
Let $e \in \mathbb{E}$. Now $K(e) \leqq e$.

The round-trip theorem - left-to-right

Let $e \in \mathbb{E}$. We write $K(e)$ for $\left(M_{A_{e}}^{*} \cdot b_{e}\right)(e)$.
Lemma
Let $e \in \mathbb{E}$. Now $K(e) \leqq e$.
Proof.
Note that $M_{A_{e}}^{*} \cdot b_{e}$, as an $\hat{\rho}(e)$-vector, is the least solution to A_{e}.
So, if we have a solution s to A_{e}, then $M_{A_{e}}^{*} \cdot b_{e} \leqq s$.
We now choose $\hat{\rho}(e)$-vector s by setting $s(e)=e$.

The round-trip theorem - left-to-right

Let $e \in \mathbb{E}$. We write $K(e)$ for $\left(M_{A_{e}}^{*} \cdot b_{e}\right)(e)$.
Lemma
Let $e \in \mathbb{E}$. Now $K(e) \leqq e$.
Proof.
Note that $M_{A_{e}}^{*} \cdot b_{e}$, as an $\hat{\rho}(e)$-vector, is the least solution to A_{e}.
So, if we have a solution s to A_{e}, then $M_{A_{e}}^{*} \cdot b_{e} \leqq s$.
We now choose $\hat{\rho}(e)$-vector s by setting $s(e)=e$.
Now s is a solution to A_{e}, by the fundamental theorem:

$$
[e \in \mathbb{A}]+\sum_{e^{\boldsymbol{a}_{\mathbb{E}}} e^{\prime}} \mathrm{a} \cdot e^{\prime} \leqq e
$$

The round-trip theorem - left-to-right

Let $e \in \mathbb{E}$. We write $K(e)$ for $\left(M_{A_{e}}^{*} \cdot b_{e}\right)(e)$.
Lemma
Let $e \in \mathbb{E}$. Now $K(e) \leqq e$.
Proof.
Note that $M_{A_{e}}^{*} \cdot b_{e}$, as an $\hat{\rho}(e)$-vector, is the least solution to A_{e}.
So, if we have a solution s to A_{e}, then $M_{A_{e}}^{*} \cdot b_{e} \leqq s$.
We now choose $\hat{\rho}(e)$-vector s by setting $s(e)=e$.
Now s is a solution to A_{e}, by the fundamental theorem:

$$
[e \in \mathbb{A}]+\sum_{e{ }_{\mathrm{a}_{\mathbb{E}} e^{\prime}}} \mathrm{a} \cdot s\left(e^{\prime}\right) \leqq s(e)
$$

The round-trip theorem - right-to-left

Lemma

The following hold for all e, $f, g \in \mathbb{E}$:

$$
\begin{array}{cc}
K(e), K(f) \leqq K(e+f) & K(e \cdot g+f \cdot g) \leqq K((e+f) \cdot g) \\
K(e \cdot(f \cdot g)) \leqq K((e \cdot f) \cdot g) & K\left(\left(1+e \cdot e^{*}\right) \cdot f\right) \leqq K\left(e^{*} \cdot f\right) \\
K(1 \cdot e) \leqq K(e) & K(e \cdot 1) \leqq K(e)
\end{array}
$$

The round-trip theorem - right-to-left

Lemma

The following hold for all e, $f, g \in \mathbb{E}$:

$$
\begin{array}{cc}
K(e), K(f) \leqq K(e+f) & K(e \cdot g+f \cdot g) \leqq K((e+f) \cdot g) \\
K(e \cdot(f \cdot g)) \leqq K((e \cdot f) \cdot g) & K\left(\left(1+e \cdot e^{*}\right) \cdot f\right) \leqq K\left(e^{*} \cdot f\right) \\
K(1 \cdot e) \leqq K(e) & K(e \cdot 1) \leqq K(e)
\end{array}
$$

Proof sketch.
By the result about similarity and solutions!

The round-trip theorem - right-to-left

Lemma

The following hold for all e, $f, g \in \mathbb{E}$:

$$
\begin{array}{cc}
K(e), K(f) \leqq K(e+f) & K(e \cdot g+f \cdot g) \leqq K((e+f) \cdot g) \\
K(e \cdot(f \cdot g)) \leqq K((e \cdot f) \cdot g) & K\left(\left(1+e \cdot e^{*}\right) \cdot f\right) \leqq K\left(e^{*} \cdot f\right) \\
K(1 \cdot e) \leqq K(e) & K(e \cdot 1) \leqq K(e)
\end{array}
$$

Proof sketch.
By the result about similarity and solutions!
For instance, e in A_{e} is simulated by $e+f$ in A_{e+f}.

The round-trip theorem — right-to-left

Lemma
Let $e \in \mathbb{E}$ and $\mathrm{a} \in \Sigma$. Now $\mathrm{a} \cdot K(e) \leqq K(\mathrm{a} \cdot e)$.

The round-trip theorem — right-to-left

Lemma
Let $e \in \mathbb{E}$ and $\mathrm{a} \in \Sigma$. Now $\mathrm{a} \cdot K(e) \leqq K(\mathrm{a} \cdot e)$.
Proof.
First, note that $1 \cdot e\left(\right.$ in $\left.A_{\mathrm{a} \cdot e}\right)$ simulates $e\left(\right.$ in $\left.A_{e}\right)$; so

$$
K(e)=\left(M_{A_{e}}^{*} \cdot b_{e}\right)(e) \leqq\left(M_{A_{\mathrm{A} \cdot e}}^{*} \cdot b_{\mathrm{a} \cdot e}\right)(1 \cdot e)
$$

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$ and $\mathrm{a} \in \Sigma$. Now a $\cdot K(e) \leqq K(\mathrm{a} \cdot e)$.
Proof.
First, note that $1 \cdot e\left(\right.$ in $\left.A_{\text {a.e }}\right)$ simulates $e\left(\right.$ in $\left.A_{e}\right)$; so

$$
K(e)=\left(M_{A_{e}}^{*} \cdot b_{e}\right)(e) \leqq\left(M_{A_{A^{\prime} \cdot}}^{*} \cdot b_{\mathrm{a} \cdot e}\right)(1 \cdot e)
$$

We derive:

$$
\mathrm{a} \cdot K(e) \leqq \mathrm{a} \cdot\left(M_{A_{\mathrm{a}} \cdot e}^{*} \cdot b_{\mathrm{a} \cdot e}\right)(1 \cdot e)
$$

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$ and $\mathrm{a} \in \Sigma$. Now a $\cdot K(e) \leqq K(\mathrm{a} \cdot e)$.
Proof.
First, note that $1 \cdot e\left(\right.$ in $\left.A_{\mathrm{a}} \cdot e\right)$ simulates $e\left(\right.$ in $\left.A_{e}\right)$; so

$$
K(e)=\left(M_{A_{e}}^{*} \cdot b_{e}\right)(e) \leqq\left(M_{A_{\mathrm{A} \cdot e}}^{*} \cdot b_{\mathrm{a} \cdot e}\right)(1 \cdot e)
$$

We derive:

$$
\begin{aligned}
\mathrm{a} \cdot K(e) & \leqq \mathrm{a} \cdot\left(M_{A_{\mathrm{a} \cdot e}}^{*} \cdot b_{\mathrm{a} \cdot e}\right)(1 \cdot e) \\
& \leqq M_{A_{\mathrm{a} \cdot e}}(\mathrm{a} \cdot e, 1 \cdot e) \cdot\left(M_{A_{\mathrm{A} \cdot} \cdot}^{*} \cdot b_{A_{\mathrm{a} \cdot e}}\right)(1 \cdot e)
\end{aligned}
$$

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$ and $\mathrm{a} \in \Sigma$. Now a $\cdot K(e) \leqq K(\mathrm{a} \cdot e)$.
Proof.
First, note that $1 \cdot e\left(\right.$ in $\left.A_{\mathrm{a}} \cdot e\right)$ simulates $e\left(\right.$ in $\left.A_{e}\right)$; so

$$
K(e)=\left(M_{A_{e}}^{*} \cdot b_{e}\right)(e) \leqq\left(M_{A_{A^{\prime} \cdot}}^{*} \cdot b_{\mathrm{a} \cdot e}\right)(1 \cdot e)
$$

We derive:

$$
\begin{aligned}
\mathrm{a} \cdot K(e) & \leqq \mathrm{a} \cdot\left(M_{A_{\mathrm{a} \cdot e}}^{*} \cdot b_{\mathrm{a} \cdot e}\right)(1 \cdot e) \\
& \leqq M_{A_{\mathrm{A}^{\prime} \cdot}}(\mathrm{a} \cdot e, 1 \cdot e) \cdot\left(M_{A_{\mathrm{a} \cdot e}}^{*} \cdot b_{A_{\mathrm{a} \cdot e}}\right)(1 \cdot e) \\
& \leqq\left(M_{A_{\mathrm{a} \cdot e}} \cdot M_{A_{\mathrm{a} \cdot e}}^{*} \cdot b_{\mathrm{A}_{\mathrm{a} \cdot e}}\right)(\mathrm{a} \cdot e)
\end{aligned}
$$

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$ and $\mathrm{a} \in \Sigma$. Now a $\cdot K(e) \leqq K(\mathrm{a} \cdot e)$.
Proof.
First, note that $1 \cdot e\left(\right.$ in $\left.A_{\mathrm{a}} \cdot e\right)$ simulates $e\left(\right.$ in $\left.A_{e}\right)$; so

$$
K(e)=\left(M_{A_{e}}^{*} \cdot b_{e}\right)(e) \leqq\left(M_{A_{\mathrm{A} \cdot e}}^{*} \cdot b_{\mathrm{a} \cdot e}\right)(1 \cdot e)
$$

We derive:

$$
\begin{aligned}
\mathrm{a} \cdot K(e) & \leqq \mathrm{a} \cdot\left(M_{A_{a \cdot e}}^{*} \cdot b_{\mathrm{a} \cdot e}\right)(1 \cdot e) \\
& \leqq M_{A_{\mathrm{a} \cdot e}}(\mathrm{a} \cdot e, 1 \cdot e) \cdot\left(M_{A_{\mathrm{a} \cdot} \cdot e}^{*} \cdot b_{A_{\mathrm{a} \cdot e}}\right)(1 \cdot e) \\
& \leqq\left(M_{A_{\mathrm{a}} \cdot e} \cdot M_{A_{\mathrm{a} \cdot e}}^{*} \cdot b_{A_{\mathrm{a}} \cdot e}\right)(\mathrm{a} \cdot e) \\
& \leqq\left(M_{A_{\mathrm{a} \cdot e}}^{*} \cdot b_{A_{\mathrm{a}} \cdot \mathrm{e}}\right)(\mathrm{a} \cdot e)=K(\mathrm{a} \cdot e)
\end{aligned}
$$

The round-trip theorem — right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.

The round-trip theorem — right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$.

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Induction on e; in the base:

- If $e=0$, then $e \cdot K(f) \equiv 0$, so the claim holds immediately.

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Induction on e; in the base:

- If $e=0$, then $e \cdot K(f) \equiv 0$, so the claim holds immediately.
- If $e=1$, then we derive:

$$
e \cdot K(f)=1 \cdot K(f) \equiv K(f) \leqq K(1 \cdot f)=K(e \cdot f)
$$

The round-trip theorem - right-to-left

Lemma

Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Induction on e; in the base:

- If $e=0$, then $e \cdot K(f) \equiv 0$, so the claim holds immediately.
- If $e=1$, then we derive:

$$
e \cdot K(f)=1 \cdot K(f) \equiv K(f) \leqq K(1 \cdot f)=K(e \cdot f)
$$

- If $e=\mathrm{a}$, then by the previous lemma we derive:

$$
e \cdot K(f)=\mathrm{a} \cdot K(f) \leqq K(\mathrm{a} \cdot f)=K(e \cdot f)
$$

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0}+e_{1}$, then derive as follows:

$$
e \cdot K(f)=\left(e_{0}+e_{1}\right) \cdot K(f)
$$

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0}+e_{1}$, then derive as follows:

$$
\begin{aligned}
e \cdot K(f) & =\left(e_{0}+e_{1}\right) \cdot K(f) \\
& \equiv e_{0} \cdot K(f)+e_{1} \cdot K(f)
\end{aligned}
$$

The round-trip theorem — right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0}+e_{1}$, then derive as follows:

$$
\begin{align*}
e \cdot K(f) & =\left(e_{0}+e_{1}\right) \cdot K(f) \\
& \equiv e_{0} \cdot K(f)+e_{1} \cdot K(f) \\
& \leqq K\left(e_{0} \cdot f\right)+K\left(e_{1} \cdot f\right) \tag{IH}
\end{align*}
$$

The round-trip theorem — right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0}+e_{1}$, then derive as follows:

$$
\begin{align*}
e \cdot K(f) & =\left(e_{0}+e_{1}\right) \cdot K(f) \\
& \equiv e_{0} \cdot K(f)+e_{1} \cdot K(f) \\
& \leqq K\left(e_{0} \cdot f\right)+K\left(e_{1} \cdot f\right) \tag{IH}\\
& \leqq K\left(e_{0} \cdot f+e_{1} \cdot f\right)
\end{align*}
$$

The round-trip theorem - right-to-left

Lemma

Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0}+e_{1}$, then derive as follows:

$$
\begin{align*}
e \cdot K(f) & =\left(e_{0}+e_{1}\right) \cdot K(f) \\
& \equiv e_{0} \cdot K(f)+e_{1} \cdot K(f) \\
& \leqq K\left(e_{0} \cdot f\right)+K\left(e_{1} \cdot f\right) \tag{IH}\\
& \leqq K\left(e_{0} \cdot f+e_{1} \cdot f\right) \\
& \leqq K\left(\left(e_{0}+e_{1}\right) \cdot f\right)
\end{align*}
$$

The round-trip theorem — right-to-left

Lemma

Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0}+e_{1}$, then derive as follows:

$$
\begin{align*}
e \cdot K(f) & =\left(e_{0}+e_{1}\right) \cdot K(f) \\
& \equiv e_{0} \cdot K(f)+e_{1} \cdot K(f) \\
& \leqq K\left(e_{0} \cdot f\right)+K\left(e_{1} \cdot f\right) \tag{IH}\\
& \leqq K\left(e_{0} \cdot f+e_{1} \cdot f\right) \\
& \leqq K\left(\left(e_{0}+e_{1}\right) \cdot f\right)=K(e \cdot f)
\end{align*}
$$

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0} \cdot e_{1}$, then we derive as follows:
$e \cdot K(f)=\left(e_{0} \cdot e_{1}\right) \cdot K(f)$

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0} \cdot e_{1}$, then we derive as follows:

$$
\begin{aligned}
e \cdot K(f) & =\left(e_{0} \cdot e_{1}\right) \cdot K(f) \\
& \equiv e_{0} \cdot\left(e_{1} \cdot K(f)\right)
\end{aligned}
$$

The round-trip theorem — right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0} \cdot e_{1}$, then we derive as follows:

$$
\begin{align*}
e \cdot K(f) & =\left(e_{0} \cdot e_{1}\right) \cdot K(f) \\
& \equiv e_{0} \cdot\left(e_{1} \cdot K(f)\right) \\
& \leqq e_{0} \cdot K\left(e_{1} \cdot f\right) \tag{IH}
\end{align*}
$$

The round-trip theorem — right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0} \cdot e_{1}$, then we derive as follows:

$$
\begin{align*}
e \cdot K(f) & =\left(e_{0} \cdot e_{1}\right) \cdot K(f) \\
& \equiv e_{0} \cdot\left(e_{1} \cdot K(f)\right) \\
& \leqq e_{0} \cdot K\left(e_{1} \cdot f\right) \tag{IH}\\
& \leqq K\left(e_{0} \cdot\left(e_{1} \cdot f\right)\right) \tag{IH}
\end{align*}
$$

The round-trip theorem — right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0} \cdot e_{1}$, then we derive as follows:

$$
\begin{align*}
e \cdot K(f) & =\left(e_{0} \cdot e_{1}\right) \cdot K(f) \\
& \equiv e_{0} \cdot\left(e_{1} \cdot K(f)\right) \\
& \leqq e_{0} \cdot K\left(e_{1} \cdot f\right) \tag{IH}\\
& \leqq K\left(e_{0} \cdot\left(e_{1} \cdot f\right)\right) \tag{IH}\\
& \leqq K\left(\left(e_{0} \cdot e_{1}\right) \cdot f\right)
\end{align*}
$$

The round-trip theorem — right-to-left

Lemma

Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0} \cdot e_{1}$, then we derive as follows:

$$
\begin{align*}
e \cdot K(f) & =\left(e_{0} \cdot e_{1}\right) \cdot K(f) \\
& \equiv e_{0} \cdot\left(e_{1} \cdot K(f)\right) \\
& \leqq e_{0} \cdot K\left(e_{1} \cdot f\right) \tag{IH}\\
& \leqq K\left(e_{0} \cdot\left(e_{1} \cdot f\right)\right) \tag{IH}\\
& \leqq K\left(\left(e_{0} \cdot e_{1}\right) \cdot f\right)=K(e \cdot f)
\end{align*}
$$

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0}^{*}$, then we derive as follows:

$$
\begin{equation*}
K(f)+e_{0} \cdot K(e \cdot f) \leqq K(f)+K\left(e_{0} \cdot e \cdot f\right) \tag{IH}
\end{equation*}
$$

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0}^{*}$, then we derive as follows:

$$
\begin{align*}
K(f)+e_{0} \cdot K(e \cdot f) & \leqq K(f)+K\left(e_{0} \cdot e \cdot f\right) \tag{IH}\\
& \leqq K\left(f+e_{0} \cdot e \cdot f\right)
\end{align*}
$$

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0}^{*}$, then we derive as follows:

$$
\begin{align*}
K(f)+e_{0} \cdot K(e \cdot f) & \leqq K(f)+K\left(e_{0} \cdot e \cdot f\right) \tag{IH}\\
& \leqq K\left(f+e_{0} \cdot e \cdot f\right) \\
& \leqq K\left(\left(1+e_{0} \cdot e\right) \cdot f\right)
\end{align*}
$$

The round-trip theorem - right-to-left

Lemma

Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0}^{*}$, then we derive as follows:

$$
\begin{align*}
K(f)+e_{0} \cdot K(e \cdot f) & \leqq K(f)+K\left(e_{0} \cdot e \cdot f\right) \tag{IH}\\
& \leqq K\left(f+e_{0} \cdot e \cdot f\right) \\
& \leqq K\left(\left(1+e_{0} \cdot e\right) \cdot f\right) \\
& \leqq K(e \cdot f)
\end{align*}
$$

The round-trip theorem - right-to-left

Lemma

Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We first claim that for all $f \in \mathbb{E}, e \cdot K(f) \leqq K(e \cdot f)$. Inductive cases:

- If $e=e_{0}^{*}$, then we derive as follows:

$$
\begin{aligned}
K(f)+e_{0} \cdot K(e \cdot f) & \leqq K(f)+K\left(e_{0} \cdot e \cdot f\right) \\
& \leqq K\left(f+e_{0} \cdot e \cdot f\right) \\
& \leqq K\left(\left(1+e_{0} \cdot e\right) \cdot f\right) \\
& \leqq K(e \cdot f)
\end{aligned}
$$

It then follows that $e \cdot K(f)=e_{0}^{*} \cdot K(f) \leqq K(e \cdot f)$.

The round-trip theorem - right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We now have that $e \cdot K(f) \leqq K(e \cdot f)$ for all $f \in \mathbb{E}$.

The round-trip theorem — right-to-left

Lemma
Let $e \in \mathbb{E}$. Now $e \leqq K(e)$.
Proof.
We now have that $e \cdot K(f) \leqq K(e \cdot f)$ for all $f \in \mathbb{E}$.
We then conclude that

$$
e \equiv e \cdot 1 \leqq e \cdot K(1) \leqq K(e \cdot 1) \leqq K(e)
$$

The round-trip theorem

Theorem (Round-trip)
Let $e \in \mathbb{E}$. Now $e \equiv K(e)$.

Solutions to powerset automata

Lemma
Let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton and let $A^{\prime}=\left\langle 2^{Q}, \rightarrow^{\prime},\{I\}, F^{\prime}\right\rangle$ be its powerset automaton. Furthermore, let s and s^{\prime} be the least solutions to A and A^{\prime} respectively. For $S \subseteq Q$ we have that $s^{\prime}(S) \equiv \sum_{q \in S} s(q)$.

Solutions to powerset automata

Lemma
Let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton and let $A^{\prime}=\left\langle 2^{Q}, \rightarrow^{\prime},\{I\}, F^{\prime}\right\rangle$ be its powerset automaton. Furthermore, let s and s^{\prime} be the least solutions to A and A^{\prime} respectively. For $S \subseteq Q$ we have that $s^{\prime}(S) \equiv \sum_{q \in S} s(q)$.

Proof sketch.
For \leqq : show that $t^{\prime}: 2^{Q} \rightarrow \mathbb{E}$ given by $t^{\prime}(S)=\sum_{q \in S} s(q)$ is a solution to A^{\prime}.

Solutions to powerset automata

Lemma
Let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton and let $A^{\prime}=\left\langle 2^{Q}, \rightarrow^{\prime},\{I\}, F^{\prime}\right\rangle$ be its powerset automaton. Furthermore, let s and s^{\prime} be the least solutions to A and A^{\prime} respectively. For $S \subseteq Q$ we have that $s^{\prime}(S) \equiv \sum_{q \in S} s(q)$.

Proof sketch.
For \leqq : show that $t^{\prime}: 2^{Q} \rightarrow \mathbb{E}$ given by $t^{\prime}(S)=\sum_{q \in S} s(q)$ is a solution to A^{\prime}.
For \geqq : show that if $s \in S \subseteq Q$, then s in A is simulated by S in A^{\prime}.

Solutions to powerset automata

Lemma
Let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton and let $A^{\prime}=\left\langle 2^{Q}, \rightarrow^{\prime},\{I\}, F^{\prime}\right\rangle$ be its powerset automaton. Furthermore, let s and s^{\prime} be the least solutions to A and A^{\prime} respectively. For $S \subseteq Q$ we have that $s^{\prime}(S) \equiv \sum_{q \in S} s(q)$.

Proof sketch.
For \leqq : show that $t^{\prime}: 2^{Q} \rightarrow \mathbb{E}$ given by $t^{\prime}(S)=\sum_{q \in S} s(q)$ is a solution to A^{\prime}.
For \geqq : show that if $s \in S \subseteq Q$, then s in A is simulated by S in A^{\prime}.
From this, it follows that $s(q) \leqq s^{\prime}(S)$, and hence $\sum_{q \in S} s(q) \leqq s^{\prime}(S)$.

Completeness

Theorem (Completeness)
Let $e, f \in \mathbb{E}$. If $\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}}$, then $e \equiv f$.

Completeness

Theorem (Completeness)
Let e, $f \in \mathbb{E}$. If $\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}}$, then $e \equiv f$.
Proof.
Write s_{A} for the least solution to A (for $A \in\left\{A_{e}, A_{e}^{\prime}, A_{f}, A_{f}^{\prime}\right\}$). We derive as follows:

$$
\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}} \Longrightarrow L_{A_{e}}(e)=L_{A_{f}}(f)
$$

Completeness

Theorem (Completeness)
Let e, $f \in \mathbb{E}$. If $\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}}$, then $e \equiv f$.
Proof.
Write s_{A} for the least solution to A (for $A \in\left\{A_{e}, A_{e}^{\prime}, A_{f}, A_{f}^{\prime}\right\}$). We derive as follows:

$$
\begin{aligned}
\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}} & \Longrightarrow L_{A_{e}}(e)=L_{A_{f}}(f) \\
& \Longrightarrow L_{A_{e}^{\prime}}(\{e\})=L_{A_{f}}(\{f\})
\end{aligned}
$$

Completeness

Theorem (Completeness)
Let $e, f \in \mathbb{E}$. If $\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}}$, then $e \equiv f$.
Proof.
Write s_{A} for the least solution to A (for $A \in\left\{A_{e}, A_{e}^{\prime}, A_{f}, A_{f}^{\prime}\right\}$). We derive as follows:

$$
\begin{aligned}
\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}} & \Longrightarrow L_{A_{e}}(e)=L_{A_{f}}(f) \\
& \Longrightarrow L_{A_{e}^{\prime}}(\{e\})=L_{A_{f}}(\{f\}) \\
& \Longrightarrow s_{A_{e}^{\prime}}(\{e\}) \equiv s_{A_{f}^{\prime}}^{\prime}(\{f\})
\end{aligned}
$$

Completeness

Theorem (Completeness)
Let $e, f \in \mathbb{E}$. If $\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}}$, then $e \equiv f$.
Proof.
Write s_{A} for the least solution to A (for $A \in\left\{A_{e}, A_{e}^{\prime}, A_{f}, A_{f}^{\prime}\right\}$). We derive as follows:

$$
\begin{aligned}
\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}} & \Longrightarrow L_{A_{e}}(e)=L_{A_{f}}(f) \\
& \Longrightarrow L_{A_{e}^{\prime}}(\{e\})=L_{A_{f}}(\{f\}) \\
& \Longrightarrow s_{A_{e}^{\prime}}(\{e\}) \equiv s_{A_{f}^{\prime}}(\{f\}) \\
& \Longrightarrow s_{A_{e}}(e) \equiv s_{A_{f}}(f)
\end{aligned}
$$

Completeness

Theorem (Completeness)
Let $e, f \in \mathbb{E}$. If $\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}}$, then $e \equiv f$.
Proof.
Write s_{A} for the least solution to A (for $A \in\left\{A_{e}, A_{e}^{\prime}, A_{f}, A_{f}^{\prime}\right\}$). We derive as follows:

$$
\begin{aligned}
\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}} & \Longrightarrow L_{A_{e}}(e)=L_{A_{f}}(f) \\
& \Longrightarrow L_{A_{e}^{\prime}}(\{e\})=L_{A_{f}}(\{f\}) \\
& \Longrightarrow s_{A_{e}^{\prime}}(\{e\}) \equiv s_{A_{f}^{\prime}}(\{f\}) \\
& \Longrightarrow s_{A_{e}}(e) \equiv s_{A_{f}}(f) \\
& \Longrightarrow K(e) \equiv K(f)
\end{aligned}
$$

Completeness

Theorem (Completeness)
Let $e, f \in \mathbb{E}$. If $\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}}$, then $e \equiv f$.
Proof.
Write s_{A} for the least solution to A (for $A \in\left\{A_{e}, A_{e}^{\prime}, A_{f}, A_{f}^{\prime}\right\}$). We derive as follows:

$$
\begin{aligned}
\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}} & \Longrightarrow L_{A_{e}}(e)=L_{A_{f}}(f) \\
& \Longrightarrow L_{A_{e}^{\prime}}(\{e\})=L_{A_{f}}(\{f\}) \\
& \Longrightarrow s_{A_{e}^{\prime}}(\{e\}) \equiv s_{A_{f}^{\prime}}(\{f\}) \\
& \Longrightarrow s_{A_{e}}(e) \equiv s_{A_{f}}(f) \\
& \Longrightarrow K(e) \equiv K(f) \\
& \Longrightarrow e \equiv f
\end{aligned}
$$

Parting thoughts

- Everything that is true, is also provable.

Parting thoughts

- Everything that is true, is also provable.
- Does not cover Horn clauses, i.e., $e_{0} \equiv f_{0}, \ldots, e_{n-1} \equiv f_{n-1} \Longrightarrow e \equiv f$.

Parting thoughts

- Everything that is true, is also provable.
- Does not cover Horn clauses, i.e., $e_{0} \equiv f_{0}, \ldots, e_{n-1} \equiv f_{n-1} \Longrightarrow e \equiv f$.
- Proof follows a common pattern (if you squint).

Parting thoughts

- Everything that is true, is also provable.
- Does not cover Horn clauses, i.e., $e_{0} \equiv f_{0}, \ldots, e_{n-1} \equiv f_{n-1} \Longrightarrow e \equiv f$.
- Proof follows a common pattern (if you squint).
- Also gives us a decision procedure for $e \equiv f$!

Enjoy ESSLLI!

