Kleene Algebra - Lecture 4

ESSLLI 2023

Last lecture

- Automata as language acceptors, and decidability of bisimilarity.
- One half of Kleene's theorem: expressions to automata.
- Antimirov's construction: automaton with expressions as states.
- The Fundamental Theorem of KA.

Today's lecture

- The other half of Kleene's theorem: automata to expressions.
- Approach: solving a system of equations using the laws of KA.
- Matrices and vectors over expressions as a helpful tool.

Automata to expressions - statement

Theorem (Kleene '56)
Let $A=\langle Q, \rightarrow, I, F\rangle$ be a finite automaton, with $q \in Q$.
We can construct $e \in \mathbb{E}$ such that $\llbracket e \rrbracket_{\mathbb{E}}=L_{A}(q)$.

Automata to expressions - ad hoc

Automata to expressions - ad hoc

From q_{0} to q_{0}, passing through q_{0} and q_{1} : $\left(a+b \cdot a^{*} \cdot b\right)^{*}$

Automata to expressions - ad hoc

From q_{0} to q_{0}, passing through q_{0} and q_{1} :

$$
\left(a+b \cdot a^{*} \cdot b\right)^{*}
$$

From q_{1} to q_{1}, passing through q_{1} but not through q_{0} : a^{*}

Automata to expressions - ad hoc

From q_{0} to q_{0}, passing through q_{0} and q_{1} :

$$
\left(a+b \cdot a^{*} \cdot b\right)^{*}
$$

From q_{1} to q_{1}, passing through q_{1} but not through q_{0} :
a^{*}
From q_{0} to q_{1} : $\left(a+b \cdot a^{*} \cdot b\right)^{*} \cdot b \cdot a^{*}$.

Automata to expressions - solving equations

Automata to expressions - solving equations

Suppose $\llbracket e_{0} \rrbracket_{\mathbb{E}}=L\left(q_{0}\right)$, and $\llbracket e_{1} \rrbracket_{\mathbb{E}}=L\left(q_{1}\right)$; then:

Automata to expressions - solving equations

Suppose $\llbracket e_{0} \rrbracket_{\mathbb{E}}=L\left(q_{0}\right)$, and $\llbracket e_{1} \rrbracket_{\mathbb{E}}=L\left(q_{1}\right)$; then:
$a \cdot e_{0} \leqq e_{0}$
b $\cdot e_{1} \leqq e_{0}$
$a \cdot e_{1} \leqq e_{1}$
b $\cdot e_{0} \leqq e_{1}$
$1 \leqq e_{1}$

Automata to expressions - solving equations

Suppose $\llbracket e_{0} \rrbracket_{\mathbb{E}}=L\left(q_{0}\right)$, and $\llbracket e_{1} \rrbracket_{\mathbb{E}}=L\left(q_{1}\right)$; then:

$$
\begin{array}{r}
\mathrm{a} \cdot e_{0}+\mathrm{b} \cdot e_{1} \leqq e_{0} \\
1+\mathrm{a} \cdot e_{1}+\mathrm{b} \cdot e_{0} \leqq e_{1}
\end{array}
$$

Automata to expressions - solving equations

Recall the constraints we derived:

$$
\begin{align*}
\mathrm{a} \cdot e_{0}+\mathrm{b} \cdot e_{1} & \leqq e_{0} \tag{1}\\
1+\mathrm{a} \cdot e_{1}+\mathrm{b} \cdot e_{0} & \leqq e_{1} \tag{2}
\end{align*}
$$

Automata to expressions - solving equations

Recall the constraints we derived:

$$
\begin{align*}
\mathrm{a} \cdot e_{0}+\mathrm{b} \cdot e_{1} & \leqq e_{0} \tag{1}\\
\left(1+\mathrm{b} \cdot e_{0}\right)+\mathrm{a} \cdot e_{1} & \leqq e_{1} \tag{2}
\end{align*}
$$

Automata to expressions - solving equations

Recall the constraints we derived:

$$
\begin{align*}
\mathrm{a} \cdot e_{0}+\mathrm{b} \cdot e_{1} & \leqq e_{0} \tag{1}\\
\left(1+\mathrm{b} \cdot e_{0}\right)+\mathrm{a} \cdot e_{1} & \leqq e_{1} \tag{2}
\end{align*}
$$

By the fixpoint axiom:

$$
\begin{equation*}
\mathrm{a}^{*} \cdot\left(1+\mathrm{b} \cdot e_{0}\right) \leqq e_{1} \tag{3}
\end{equation*}
$$

Automata to expressions - solving equations

Recall the constraints we derived:

$$
\begin{align*}
\mathrm{a} \cdot e_{0}+\mathrm{b} \cdot e_{1} & \leqq e_{0} \tag{1}\\
\left(1+\mathrm{b} \cdot e_{0}\right)+\mathrm{a} \cdot e_{1} & \leqq e_{1} \tag{2}
\end{align*}
$$

By the fixpoint axiom:

$$
\begin{equation*}
\mathrm{a}^{*} \cdot\left(1+\mathrm{b} \cdot \mathrm{e}_{0}\right) \leqq e_{1} \tag{3}
\end{equation*}
$$

Filling (3) into (1)

$$
\begin{equation*}
\mathrm{a} \cdot \mathrm{e}_{0}+\mathrm{b} \cdot\left(\mathrm{a}^{*} \cdot\left(1+\mathrm{b} \cdot e_{0}\right)\right) \leqq e_{0} \tag{4}
\end{equation*}
$$

Automata to expressions - solving equations

Recall the constraints we derived:

$$
\begin{align*}
\mathrm{a} \cdot e_{0}+\mathrm{b} \cdot e_{1} & \leqq e_{0} \tag{1}\\
\left(1+\mathrm{b} \cdot e_{0}\right)+\mathrm{a} \cdot e_{1} & \leqq e_{1} \tag{2}
\end{align*}
$$

By the fixpoint axiom:

$$
\begin{equation*}
\mathrm{a}^{*} \cdot\left(1+\mathrm{b} \cdot \mathrm{e}_{0}\right) \leqq e_{1} \tag{3}
\end{equation*}
$$

Filling (3) into (1)

$$
\begin{equation*}
\mathrm{b} \cdot \mathrm{a}^{*}+\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b}\right) \cdot e_{0} \leqq e_{0} \tag{4}
\end{equation*}
$$

Automata to expressions - solving equations

Recall the constraints we derived:

$$
\begin{array}{r}
\mathrm{a} \cdot e_{0}+\mathrm{b} \cdot e_{1} \leqq e_{0} \\
\left(1+\mathrm{b} \cdot e_{0}\right)+\mathrm{a} \cdot e_{1} \leqq e_{1} \tag{2}
\end{array}
$$

By the fixpoint axiom:

$$
\begin{equation*}
\mathrm{a}^{*} \cdot\left(1+\mathrm{b} \cdot e_{0}\right) \leqq e_{1} \tag{3}
\end{equation*}
$$

Filling (3) into (1)

$$
\begin{equation*}
\mathrm{b} \cdot \mathrm{a}^{*}+\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b}\right) \cdot e_{0} \leqq e_{0} \tag{4}
\end{equation*}
$$

Applying the fixpoint rule to (4):

$$
\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{a}^{*} \cdot \mathrm{~b}\right)^{*} \cdot \mathrm{~b} \cdot \mathrm{a}^{*} \leqq e_{0}
$$

Automata to expressions - solving automata

Definition (Solution)
Let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton.
A solution to A is a function $s: Q \rightarrow \mathbb{E}$, such that for all $q \in Q$ it holds that

$$
[q \in F]+\sum_{q^{2} \rightarrow q^{\prime}} \mathrm{a} \cdot s\left(q^{\prime}\right) \leqq s(q)
$$

Automata to expressions - solving automata

Definition (Solution)

Let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton.
A solution to A is a function $s: Q \rightarrow \mathbb{E}$, such that for all $q \in Q$ it holds that

$$
[q \in F]+\sum_{q^{\mathrm{a}} \rightarrow q^{\prime}} \mathrm{a} \cdot s\left(q^{\prime}\right) \leqq s(q)
$$

Example:

$$
\begin{aligned}
& 0+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \leqq s\left(q_{0}\right) \\
& 1+\mathrm{a} \cdot s\left(q_{1}\right)+\mathrm{b} \cdot s\left(q_{0}\right) \leqq s\left(q_{1}\right)
\end{aligned}
$$

Automata to expressions - solving automata

Definition (Least solution)

Let A be an automaton, and let s be a solution to A.
We say that s is a least solution to A when s is (pointwise) least w.r.t. \leqq; i.e:

$$
\forall \text { solutions } s^{\prime}, q \in Q . s(q) \leqq s^{\prime}(q)
$$

Automata to expressions - solving automata

Definition (Least solution)

Let A be an automaton, and let s be a solution to A.
We say that s is a least solution to A when s is (pointwise) least w.r.t. \leqq; i.e:

$$
\forall \text { solutions } s^{\prime}, q \in Q . s(q) \leqq s^{\prime}(q)
$$

Lemma
Let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton, and let $s: Q \rightarrow \mathbb{E}$ be a least solution to A.
Then $\llbracket s(q) \rrbracket_{\mathbb{E}}=L(q)$ for all $q \in Q$.

Vectors and matrices

Definition (Vectors and matrices)
Let S be a set.
An S-vector (over \mathbb{E}) is a function $v: S \rightarrow \mathbb{E}$.
An S-matrix (over \mathbb{E}) is a function $M: S \times S \rightarrow \mathbb{E}$.

Vectors and matrices - example

Ex.: let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton; define:

$$
M_{A}\left(q, q^{\prime}\right)=\sum_{q^{\mathrm{a}} q^{\prime}} \mathrm{a}
$$

Vectors and matrices - example

Ex.: let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton; define:

$$
M_{A}\left(q, q^{\prime}\right)=\sum_{q^{\mathrm{a}} \rightarrow q^{\prime}} \mathrm{a}
$$

Vectors and matrices - example

Ex.: let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton; define:

$$
M_{A}\left(q, q^{\prime}\right)=\sum_{q^{\mathrm{a}} \rightarrow q^{\prime}} \mathrm{a}
$$

Can write out matrices as tables, vectors as columns:

$$
M_{A}=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{~b} & \mathrm{a}
\end{array}\right] \quad s=\left[\begin{array}{c}
e_{0} \\
e_{1}
\end{array}\right]
$$

Vectors and matrices - operations

Definition (Operations and equivalence on vectors and matrices)
Let S be a finite set, let s, t be S-vectors, and let M be an S-matrix.

Vectors and matrices - operations

Definition (Operations and equivalence on vectors and matrices)

Let S be a finite set, let s, t be S-vectors, and let M be an S-matrix.
The S-vectors $s+t$ and $M \cdot s$ are defined by

$$
(s+t)(x)=s(x)+t(x) \quad(M \cdot s)(x)=\sum_{y \in S} M(x, y) \cdot s(y)
$$

Vectors and matrices - operations

Definition (Operations and equivalence on vectors and matrices)

Let S be a finite set, let s, t be S-vectors, and let M be an S-matrix.
The S-vectors $s+t$ and $M \cdot s$ are defined by

$$
(s+t)(x)=s(x)+t(x) \quad(M \cdot s)(x)=\sum_{y \in S} M(x, y) \cdot s(y)
$$

Lastly, we extend equivalence to S-vectors in a pointwise manner:

$$
s \equiv t \Longleftrightarrow \forall x \in S . s(x) \equiv t(x)
$$

Just like before $s \leqq t \Longleftrightarrow s+t \equiv t$.

Vectors and matrices - operations

$$
\left.\begin{array}{l}
0+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \leqq s\left(q_{0}\right) \\
1+\mathrm{b} \cdot s\left(q_{0}\right)+\mathrm{a} \cdot s\left(q_{1}\right) \leqq s\left(q_{1}\right)
\end{array}\right\} \Longleftrightarrow\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{~b} & \mathrm{a}
\end{array}\right] \cdot\left[\begin{array}{l}
s\left(q_{0}\right) \\
s\left(q_{1}\right)
\end{array}\right] \leqq\left[\begin{array}{l}
s\left(q_{0}\right) \\
s\left(q_{1}\right)
\end{array}\right]
$$

Vectors and matrices - operations

$$
\left.\left.\begin{array}{c}
0+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \leqq s\left(q_{0}\right) \\
1+\mathrm{b} \cdot s\left(q_{0}\right)+\mathrm{a} \cdot s\left(q_{1}\right) \leqq s\left(q_{1}\right)
\end{array}\right\} \Longleftrightarrow\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{~b} & \mathrm{a}
\end{array}\right] \cdot\left[\begin{array}{l}
s\left(q_{0}\right) \\
s\left(q_{1}\right)
\end{array}\right] \leqq\left[\begin{array}{l}
s\left(q_{0}\right) \\
s\left(q_{1}\right)
\end{array}\right]\right)
$$

Vectors and matrices - operations

$$
\left.\left.\begin{array}{c}
0+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \leqq s\left(q_{0}\right) \\
1+\mathrm{b} \cdot s\left(q_{0}\right)+\mathrm{a} \cdot s\left(q_{1}\right) \leqq s\left(q_{1}\right)
\end{array}\right\} \Longleftrightarrow\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{~b} & \mathrm{a}
\end{array}\right] \cdot\left[\begin{array}{l}
s\left(q_{0}\right) \\
s\left(q_{1}\right)
\end{array}\right] \leqq\left[\begin{array}{l}
s\left(q_{0}\right) \\
s\left(q_{1}\right)
\end{array}\right]\right)
$$

Vectors and matrices - operations

$$
\left.\begin{array}{l}
0+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \leqq s\left(q_{0}\right) \\
1+\mathrm{b} \cdot s\left(q_{0}\right)+\mathrm{a} \cdot s\left(q_{1}\right) \leqq s\left(q_{1}\right)
\end{array}\right\} \Longleftrightarrow\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{~b} & \mathrm{a}
\end{array}\right] \cdot\left[\begin{array}{l}
s\left(q_{0}\right) \\
s\left(q_{1}\right)
\end{array}\right] \leqq\left[\begin{array}{l}
s\left(q_{0}\right) \\
s\left(q_{1}\right)
\end{array}\right]
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{~b} & \mathrm{a}
\end{array}\right] \cdot\left[\begin{array}{l}
s\left(q_{0}\right) \\
s\left(q_{1}\right)
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \\
\mathrm{b} \cdot s\left(q_{0}\right)+\mathrm{a} \cdot s\left(q_{1}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
0+\mathrm{a} \cdot s\left(q_{0}\right)+\mathrm{b} \cdot s\left(q_{1}\right) \\
1+\mathrm{b} \cdot s\left(q_{0}\right)+\mathrm{a} \cdot s\left(q_{1}\right)
\end{array}\right]
\end{aligned}
$$

Solutions to automata, via matrices

Lemma
Let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton, and define

$$
M_{A}\left(q, q^{\prime}\right)=\sum_{q^{\mathrm{a}} q^{\prime}} \mathrm{a} \quad b_{A}(q)=[q \in F]
$$

A-vector s is a solution to A if and only if $b_{A}+M_{A} \cdot s \leqq s$.

Solutions to automata, via matrices

Lemma
Let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton, and define

$$
M_{A}\left(q, q^{\prime}\right)=\sum_{q^{\mathrm{a}} q^{\prime}} \mathrm{a} \quad b_{A}(q)=[q \in F]
$$

$A Q$-vector s is a solution to A if and only if $b_{A}+M_{A} \cdot s \leqq s$.

Corollary
Let s be a Q-vector. The following are equivalent:

1. s is the least solution to A
2. s is the least Q-vector such that $b_{A}+M_{A} \cdot s \leqq s$.

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct the least Q-vector s such that $b+M \cdot s \leqq s$.

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct the least Q-vector s such that $b+M \cdot s \leqq s$.

Definition

Let S be a set, let b be an S-vector, and let $e \in \mathbb{E}$.
We write $b ; e$ for the S-vector given by $(b ; e)(s)=b(s) \cdot e$.

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s ; e \leqq t
$$

Definition

Let S be a set, let b be an S-vector, and let $e \in \mathbb{E}$.
We write $b ; e$ for the S-vector given by $(b ; e)(s)=b(s) \cdot e$.

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof.

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof.
By induction on Q. In the base, where $Q=\emptyset$, the claim holds immediately.

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof.
For the inductive step, let $Q=Q^{\prime} \cup\{p\}$, with $p \notin Q^{\prime}$.

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \% e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof.

For the inductive step, let $Q=Q^{\prime} \cup\{p\}$, with $p \notin Q^{\prime}$.
Choose the Q^{\prime}-matrix M^{\prime} and Q^{\prime}-vector b^{\prime} by setting

$$
\begin{aligned}
M^{\prime}\left(q, q^{\prime}\right) & =M\left(q, q^{\prime}\right)+M(q, p) \cdot M(p, p)^{*} \cdot M\left(p, q^{\prime}\right) \\
b^{\prime}(q) & =b(q)+M(q, p) \cdot M(p, p)^{*} \cdot b(p)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \% e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
By induction, we can compute a Q^{\prime}-vector s^{\prime}, satisfying

$$
b^{\prime}+M^{\prime} \cdot s^{\prime} \leqq s^{\prime} \quad \forall t^{\prime}, e . b^{\prime} ; e+M^{\prime} \cdot t^{\prime} \leqq t^{\prime} \Longrightarrow s^{\prime} ; e \leqq t^{\prime}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \% e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
Define the Q-vector s by

$$
s(q)= \begin{cases}s^{\prime}(q) & q \in Q^{\prime} \\ M(p, p)^{*} \cdot\left(b(p)+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)\right) & q=p\end{cases}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).

$$
(b+M \cdot s)(q)=b(q)+\sum_{q^{\prime} \in Q} M\left(q, q^{\prime}\right) \cdot s\left(q^{\prime}\right)
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).

$$
(b+M \cdot s)(q) \equiv b(q)+M(q, p) \cdot s(p)+\sum_{q^{\prime} \in Q^{\prime}} M\left(q, q^{\prime}\right) \cdot s\left(q^{\prime}\right)
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s ; e \leqq t
$$

Proof (cont'd).

$$
\begin{align*}
(b+M \cdot s)(q) \equiv b(q) & +M(q, p) \cdot M(p, p)^{*} \cdot\left(b(p)+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)\right) \\
& +\sum_{q^{\prime} \in Q^{\prime}} M\left(q, q^{\prime}\right) \cdot s\left(q^{\prime}\right)
\end{align*}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e \cdot b ; e+M \cdot t \leqq t \Longrightarrow s ; e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, then we can derive:

$$
\begin{aligned}
(b+M \cdot s)(q) \equiv b(q) & +M(q, p) \cdot M(p, p)^{*} \cdot b(p) \\
& +M(q, p) \cdot M(p, p)^{*} \cdot \sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right) \\
& +\sum_{q^{\prime} \in Q^{\prime}} M\left(q, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, then we can derive:

$$
\begin{aligned}
(b+M \cdot s)(q) \equiv b(q) & +M(q, p) \cdot M(p, p)^{*} \cdot b(p) \\
& +\sum_{q^{\prime} \in Q^{\prime}}\left(M\left(q, q^{\prime}\right)+M(q, p) \cdot M(p, p)^{*} \cdot M\left(p, q^{\prime}\right)\right) \cdot s^{\prime}\left(q^{\prime}\right)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, then we can derive:

$$
\begin{aligned}
(b+M \cdot s)(q) \equiv b(q) & +M(q, p) \cdot M(p, p)^{*} \cdot b(p) \\
& +\sum_{q^{\prime} \in Q^{\prime}}\left(M\left(q, q^{\prime}\right)+M(q, p) \cdot M(p, p)^{*} \cdot M\left(p, q^{\prime}\right)\right) \cdot s^{\prime}\left(q^{\prime}\right) \\
\equiv & b^{\prime}(q)+\sum_{q^{\prime} \in Q^{\prime}} M^{\prime}\left(q, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, then we can derive:

$$
\begin{aligned}
(b+M \cdot s)(q) \equiv b(q) & +M(q, p) \cdot M(p, p)^{*} \cdot b(p) \\
& +\sum_{q^{\prime} \in Q^{\prime}}\left(M\left(q, q^{\prime}\right)+M(q, p) \cdot M(p, p)^{*} \cdot M\left(p, q^{\prime}\right)\right) \cdot s^{\prime}\left(q^{\prime}\right) \\
\equiv & b^{\prime}(q)+\sum_{q^{\prime} \in Q^{\prime}} M^{\prime}\left(q, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)=\left(b^{\prime}+M^{\prime} \cdot s^{\prime}\right)(q)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, then we can derive:

$$
\begin{aligned}
(b+M \cdot s)(q) \equiv b(q) & +M(q, p) \cdot M(p, p)^{*} \cdot b(p) \\
& +\sum_{q^{\prime} \in Q^{\prime}}\left(M\left(q, q^{\prime}\right)+M(q, p) \cdot M(p, p)^{*} \cdot M\left(p, q^{\prime}\right)\right) \cdot s^{\prime}\left(q^{\prime}\right) \\
\equiv & b^{\prime}(q)+\sum_{q^{\prime} \in Q^{\prime}} M^{\prime}\left(q, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)=\left(b^{\prime}+M^{\prime} \cdot s^{\prime}\right)(q) \leqq s^{\prime}(q)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, then we can derive:

$$
\begin{aligned}
(b+M \cdot s)(q) \equiv b(q) & +M(q, p) \cdot M(p, p)^{*} \cdot b(p) \\
& +\sum_{q^{\prime} \in Q^{\prime}}\left(M\left(q, q^{\prime}\right)+M(q, p) \cdot M(p, p)^{*} \cdot M\left(p, q^{\prime}\right)\right) \cdot s^{\prime}\left(q^{\prime}\right) \\
\equiv & b^{\prime}(q)+\sum_{q^{\prime} \in Q^{\prime}} M^{\prime}\left(q, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)=\left(b^{\prime}+M^{\prime} \cdot s^{\prime}\right)(q) \leqq s^{\prime}(q)=s(q)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s ; e \leqq t
$$

Proof (cont'd).
If $q=p$, then we can derive:

$$
\begin{aligned}
(b+M \cdot s)(p) \equiv b(p) & +M(p, p) \cdot M(p, p)^{*} \cdot\left(b(p)+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)\right) \\
& +\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot s\left(q^{\prime}\right)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q=p$, then we can derive:

$$
(b+M \cdot s)(p) \equiv\left(1+M(p, p) \cdot M(p, p)^{*}\right) \cdot\left(b(p)+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)\right)
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q=p$, then we can derive:

$$
(b+M \cdot s)(p) \equiv M(p, p)^{*} \cdot\left(b(p)+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)\right)
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q=p$, then we can derive:

$$
\begin{aligned}
(b+M \cdot s)(p) & \equiv M(p, p)^{*} \cdot\left(b(p)+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)\right) \\
& =s(p)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
So, we know that $b+M \cdot s \leqq s$.
What about the second condition?

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
Let $e \in \mathbb{E}$, and suppose t is a Q-vector such that $b ; e+M \cdot t \leqq t$.

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
Let $e \in \mathbb{E}$, and suppose t is a Q-vector such that $b ; e+M \cdot t \leqq t$.

$$
\begin{aligned}
& b(p) \cdot e+M(p, p) \cdot t(p)+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot t\left(q^{\prime}\right) \\
& \equiv b(p) \cdot e+\sum_{q^{\prime} \in Q} M\left(p, q^{\prime}\right) \cdot s\left(q^{\prime}\right) \leqq t(p)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \% e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
Let $e \in \mathbb{E}$, and suppose t is a Q-vector such that $b ; e+M \cdot t \leqq t$.

$$
\begin{equation*}
M(p, p)^{*} \cdot\left(b(p) \cdot e+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot t\left(q^{\prime}\right)\right) \leqq t(p) \tag{§}
\end{equation*}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
Let the Q^{\prime}-vector t^{\prime} be given by $t^{\prime}(q)=t(q)$.
Claim: $b^{\prime} ; e+M^{\prime} \cdot t^{\prime} \leqq t^{\prime}$.

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, we derive as follows:
$\left(b^{\prime} ; e+M^{\prime} \cdot t^{\prime}\right)(q)=b^{\prime}(q) \cdot e+\sum_{q^{\prime} \in Q^{\prime}} M^{\prime}\left(q, q^{\prime}\right) \cdot t^{\prime}\left(q^{\prime}\right)$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e \cdot b ; e+M \cdot t \leqq t \Longrightarrow s ; e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, we derive as follows:

$$
\begin{aligned}
\left(b^{\prime} ; e+M^{\prime} \cdot t^{\prime}\right)(q) \equiv b(q) \cdot e & +M(q, p) \cdot M(p, p)^{*} \cdot b(p) \cdot e \\
& +\sum_{q^{\prime} \in Q^{\prime}}\left(M\left(q, q^{\prime}\right)+M(q, p) \cdot M(p, p)^{*} \cdot M\left(p, q^{\prime}\right)\right) \cdot t^{\prime}\left(q^{\prime}\right)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, we derive as follows:

$$
\begin{aligned}
\left(b^{\prime} \circ e+M^{\prime} \cdot t^{\prime}\right)(q) \equiv b(q) \cdot e & +M(q, p) \cdot M(p, p)^{*} \cdot\left(b(p) \cdot e+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot t\left(q^{\prime}\right)\right) \\
& +\sum_{q^{\prime} \in Q^{\prime}} M\left(q, q^{\prime}\right) \cdot t\left(q^{\prime}\right)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, we derive as follows:

$$
\left(b^{\prime} ; e+M^{\prime} \cdot t^{\prime}\right)(q) \leqq b(q) \cdot e+M(q, p) \cdot t(p)+\sum_{q^{\prime} \in Q^{\prime}} M\left(q, q^{\prime}\right) \cdot t\left(q^{\prime}\right)
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, we derive as follows:
$\left(b^{\prime} ; e+M^{\prime} \cdot t^{\prime}\right)(q) \leqq b(q) \cdot e+\sum_{q^{\prime} \in Q} M\left(q, q^{\prime}\right) \cdot t\left(q^{\prime}\right)$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, we derive as follows:

$$
\begin{aligned}
\left(b^{\prime} ; e+M^{\prime} \cdot t^{\prime}\right)(q) & \leqq b(q) \cdot e+\sum_{q^{\prime} \in Q} M\left(q, q^{\prime}\right) \cdot t\left(q^{\prime}\right) \\
& \equiv(b ; e+M \cdot t)(q) \leqq t(q)=t^{\prime}(q)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b \circ e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q \in Q^{\prime}$, we derive as follows:

$$
\begin{aligned}
\left(b^{\prime} ; e+M^{\prime} \cdot t^{\prime}\right)(q) & \leqq b(q) \cdot e+\sum_{q^{\prime} \in Q} M\left(q, q^{\prime}\right) \cdot t\left(q^{\prime}\right) \\
& \equiv(b ; e+M \cdot t)(q) \leqq t(q)=t^{\prime}(q)
\end{aligned}
$$

Now $b^{\prime} ; e+M^{\prime} \cdot t^{\prime} \leqq t$. By the induction hypothesis, $s^{\prime} ; e \leqq t^{\prime}$.

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s ; e \leqq t
$$

Proof (cont'd).
If $q=p$, then we derive:

$$
s(p) \cdot e \equiv M(p, p)^{*} \cdot\left(b(p)+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right)\right) \cdot e
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q=p$, then we derive:

$$
s(p) \cdot e \equiv M(p, p)^{*} \cdot\left(b(p) \cdot e+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot s^{\prime}\left(q^{\prime}\right) \cdot e\right)
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q=p$, then we derive:

$$
s(p) \cdot e \leqq M(p, p)^{*} \cdot\left(b(p) \cdot e+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot t^{\prime}\left(q^{\prime}\right)\right)
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q=p$, then we derive:

$$
\begin{aligned}
s(p) \cdot e & \leqq M(p, p)^{*} \cdot\left(b(p) \cdot e+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot t^{\prime}\left(q^{\prime}\right)\right) \\
& \leqq t(p)
\end{aligned}
$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$
b+M \cdot s \leqq s \quad \forall t, e . b ; e+M \cdot t \leqq t \Longrightarrow s \% e \leqq t
$$

Proof (cont'd).
If $q=p$, then we derive:

$$
\begin{aligned}
s(p) \cdot e & \leqq M(p, p)^{*} \cdot\left(b(p) \cdot e+\sum_{q^{\prime} \in Q^{\prime}} M\left(p, q^{\prime}\right) \cdot t^{\prime}\left(q^{\prime}\right)\right) \\
& \leqq t(p)
\end{aligned}
$$

Conclusion: $s \% e \leqq t$, as desired.

The fruits of our labor

Given an automaton A with state q, we can compute e such that $L_{A}(q)=\llbracket e \rrbracket_{\mathbb{E}}$:

- Compute the matrix M_{A} and the vector b_{A}.
- Construct the least vector s such that $b_{A}+M_{A} \cdot s \leqq s$.
- This vector solves A; we can choose $e=s(q)$.

Some linear algebra

Given a Q-matrix M, we can compute for each Q-vector b a least Q-vector s such that $b+M \cdot s \leqq s$. This induces a map solve M on Q-vectors.

Some linear algebra

Given a Q-matrix M, we can compute for each Q-vector b a least Q-vector s such that $b+M \cdot s \leqq s$. This induces a map solve M on Q-vectors.
In fact, this map is linear in the sense that

$$
\text { solve }_{M}(b ; e)=\operatorname{solve}_{M}(b) ; e \quad \text { solve }_{M}\left(b_{1}+b_{2}\right)=\operatorname{solve}_{M}\left(b_{1}\right)+\operatorname{solve}_{M}\left(b_{2}\right)
$$

Some linear algebra

Given a Q-matrix M, we can compute for each Q-vector b a least Q-vector s such that $b+M \cdot s \leqq s$. This induces a map solve M on Q-vectors.
In fact, this map is linear in the sense that

$$
\text { solve }_{M}(b ; e)=\operatorname{solve}_{M}(b) ; e \quad \text { solve }_{M}\left(b_{1}+b_{2}\right)=\operatorname{solve}_{M}\left(b_{1}\right)+\operatorname{solve}_{M}\left(b_{2}\right)
$$

Linear algebra tells us that solve M_{M} is represented by a matrix!

Star of a matrix

Lemma

Let M be a Q-matrix. We can construct a matrix M^{*} such that the following hold:
(i) if s and b are Q-vectors such that $b+M \cdot s \leqq s$, then $M^{*} \cdot b \leqq s$; and
(ii) $\mathbf{1}+M \cdot M^{*} \equiv M^{*}$, where $\mathbf{1}$ is the Q-matrix given by $\mathbf{1}\left(q, q^{\prime}\right)=\left[q=q^{\prime}\right]$.

Proof sketch.
For $q \in Q$, let u_{q} be the Q-vector given by $u_{q}\left(q^{\prime}\right)=\left[q=q^{\prime}\right]$.

Star of a matrix

Lemma

Let M be a Q-matrix. We can construct a matrix M^{*} such that the following hold:
(i) if s and b are Q-vectors such that $b+M \cdot s \leqq s$, then $M^{*} \cdot b \leqq s$; and
(ii) $\mathbf{1}+M \cdot M^{*} \equiv M^{*}$, where $\mathbf{1}$ is the Q-matrix given by $\mathbf{1}\left(q, q^{\prime}\right)=\left[q=q^{\prime}\right]$.

Proof sketch.
For $q \in Q$, let u_{q} be the Q-vector given by $u_{q}\left(q^{\prime}\right)=\left[q=q^{\prime}\right]$.
Let s_{q} be the least Q-vector such that $u_{q}+M \cdot s_{q} \leqq s_{q}$.

Star of a matrix

Lemma

Let M be a Q-matrix. We can construct a matrix M^{*} such that the following hold:
(i) if s and b are Q-vectors such that $b+M \cdot s \leqq s$, then $M^{*} \cdot b \leqq s$; and
(ii) $\mathbf{1}+M \cdot M^{*} \equiv M^{*}$, where $\mathbf{1}$ is the Q-matrix given by $\mathbf{1}\left(q, q^{\prime}\right)=\left[q=q^{\prime}\right]$.

Proof sketch.
For $q \in Q$, let u_{q} be the Q-vector given by $u_{q}\left(q^{\prime}\right)=\left[q=q^{\prime}\right]$.
Let s_{q} be the least Q-vector such that $u_{q}+M \cdot s_{q} \leqq s_{q}$.
Choose $M^{*}\left(q, q^{\prime}\right)=s_{q^{\prime}}(q)$.

Star of a matrix

Lemma

Let M be a Q-matrix. We can construct a matrix M^{*} such that the following hold:
(i) if s and b are Q-vectors such that $b+M \cdot s \leqq s$, then $M^{*} \cdot b \leqq s$; and
(ii) $\mathbf{1}+M \cdot M^{*} \equiv M^{*}$, where $\mathbf{1}$ is the Q-matrix given by $\mathbf{1}\left(q, q^{\prime}\right)=\left[q=q^{\prime}\right]$.

Proof sketch.
For $q \in Q$, let u_{q} be the Q-vector given by $u_{q}\left(q^{\prime}\right)=\left[q=q^{\prime}\right]$.
Let s_{q} be the least Q-vector such that $u_{q}+M \cdot s_{q} \leqq s_{q}$.
Choose $M^{*}\left(q, q^{\prime}\right)=s_{q^{\prime}}(q)$.

Corollary

Let M, B and S be Q-matrices. If $B+M \cdot S \leqq S$, then $M^{*} \cdot B \leqq S$.

Dagger of a matrix

Lemma
Let M be a Q-matrix. We can construct a matrix M^{\dagger} satisfying

$$
1+M^{\dagger} \cdot M=M^{\dagger} \quad B+S \cdot M \leqq S \Longrightarrow B \cdot M^{\dagger} \leqq S
$$

Dagger of a matrix

Lemma
Let M be a Q-matrix. We can construct a matrix M^{\dagger} satisfying

$$
1+M^{\dagger} \cdot M=M^{\dagger} \quad B+S \cdot M \leqq S \Longrightarrow B \cdot M^{\dagger} \leqq S
$$

Corollary
Let M be a Q-matrix. Now $M^{*}=M^{\dagger}$.

Dagger of a matrix

Lemma
Let M be a Q-matrix. We can construct a matrix M^{\dagger} satisfying

$$
1+M^{\dagger} \cdot M=M^{\dagger} \quad B+S \cdot M \leqq S \Longrightarrow B \cdot M^{\dagger} \leqq S
$$

Corollary
Let M be a Q-matrix. Now $M^{*}=M^{\dagger}$.
Proof sketch.
Show that $1+M \cdot M^{\dagger} \leqq M^{\dagger}$ and $1+M^{*} \cdot M \leqq M^{\dagger}$.

Dagger of a matrix

Lemma

Let M be a Q-matrix. We can construct a matrix M^{\dagger} satisfying

$$
1+M^{\dagger} \cdot M=M^{\dagger} \quad B+S \cdot M \leqq S \Longrightarrow B \cdot M^{\dagger} \leqq S
$$

Corollary
Let M be a Q-matrix. Now $M^{*}=M^{\dagger}$.
Proof sketch.
Show that $1+M \cdot M^{\dagger} \leqq M^{\dagger}$ and $1+M^{*} \cdot M \leqq M^{\dagger}$.
The upshot: matrices of KA terms satisfy the laws of KA!

Next lecture

- Connect least solutions and (bi)simulations.

Next lecture

- Connect least solutions and (bi)simulations.
- The round-trip theorem.

Next lecture

- Connect least solutions and (bi)simulations.
- The round-trip theorem.
- The completeness theorem.

