Last lecture

- Automata as language acceptors, and decidability of bisimilarity.
- One half of Kleene’s theorem: expressions to automata.
- Antimirov’s construction: automaton with expressions as states.
- The Fundamental Theorem of KA.
Today’s lecture

- The *other* half of Kleene’s theorem: automata to expressions.
- Approach: solving a system of equations using the laws of KA.
- Matrices and vectors over expressions as a helpful tool.
Theorem (Kleene ’56)

Let $A = \langle Q, \rightarrow, I, F \rangle$ be a finite automaton, with $q \in Q$.

We can construct $e \in E$ such that $[e]_E = L_A(q)$.
Automata to expressions — ad hoc

From q_0 to q_0, passing through q_0 and q_1: $(a + b \cdot a^* \cdot b)^*$

From q_1 to q_1, passing through q_1 but not through q_0: a^*

From q_0 to q_1: $(a + b \cdot a^* \cdot b)^* \cdot b \cdot a^*$.
Automata to expressions — ad hoc

From q_0 to q_0, passing through q_0 and q_1: $(a + b \cdot a^* \cdot b)^*$
Automata to expressions — ad hoc

From q_0 to q_0, passing through q_0 and q_1: $(a + b \cdot a^* \cdot b)^*$

From q_1 to q_1, passing through q_1 but not through q_0: a^*
From q_0 to q_0, passing through q_0 and q_1: $(a + b \cdot a^* \cdot b)^*$

From q_1 to q_1, passing through q_1 but not through q_0: a^*

From q_0 to q_1: $(a + b \cdot a^* \cdot b)^* \cdot b \cdot a^*$.
Suppose $J_0 E = L(q_0)$, and $J_1 E = L(q_1)$; then:
Automata to expressions — solving equations

Suppose $\llbracket e_0 \rrbracket_E = L(q_0)$, and $\llbracket e_1 \rrbracket_E = L(q_1)$; then:
Suppose $\llbracket e_0 \rrbracket_E = L(q_0)$, and $\llbracket e_1 \rrbracket_E = L(q_1)$; then:

\[
\begin{align*}
 a \cdot e_0 & \leq e_0 & b \cdot e_1 & \leq e_0 & a \cdot e_1 & \leq e_1 & b \cdot e_0 & \leq e_1 & 1 & \leq e_1
\end{align*}
\]
Suppose $[e_0]_E = L(q_0)$, and $[e_1]_E = L(q_1)$; then:

$$a \cdot e_0 + b \cdot e_1 \leq e_0$$

$$1 + a \cdot e_1 + b \cdot e_0 \leq e_1$$
Automata to expressions — solving equations

Recall the constraints we derived:

\[a \cdot e_0 + b \cdot e_1 \leq e_0 \] \hspace{1cm} (1)

\[1 + a \cdot e_1 + b \cdot e_0 \leq e_1 \] \hspace{1cm} (2)
Automata to expressions — solving equations

Recall the constraints we derived:

\[a \cdot e_0 + b \cdot e_1 \leq e_0 \] \hspace{1cm} (1)

\[(1 + b \cdot e_0) + a \cdot e_1 \leq e_1 \] \hspace{1cm} (2)
Automata to expressions — solving equations

Recall the constraints we derived:

\[a \cdot e_0 + b \cdot e_1 \leq e_0 \] \hspace{1cm} (1)

\[(1 + b \cdot e_0) + a \cdot e_1 \leq e_1 \] \hspace{1cm} (2)

By the fixpoint axiom:

\[a^* \cdot (1 + b \cdot e_0) \leq e_1 \] \hspace{1cm} (3)
Automata to expressions — solving equations

Recall the constraints we derived:

\[a \cdot e_0 + b \cdot e_1 \leq e_0 \] \hspace{1cm} (1)

\[(1 + b \cdot e_0) + a \cdot e_1 \leq e_1 \] \hspace{1cm} (2)

By the fixpoint axiom:

\[a^* \cdot (1 + b \cdot e_0) \leq e_1 \] \hspace{1cm} (3)

Filling (3) into (1)

\[a \cdot e_0 + b \cdot (a^* \cdot (1 + b \cdot e_0)) \leq e_0 \] \hspace{1cm} (4)
Automata to expressions — solving equations

Recall the constraints we derived:

\[a \cdot e_0 + b \cdot e_1 \leq e_0 \]
(1)

\[(1 + b \cdot e_0) + a \cdot e_1 \leq e_1 \]
(2)

By the fixpoint axiom:

\[a^* \cdot (1 + b \cdot e_0) \leq e_1 \]
(3)

Filling (3) into (1)

\[b \cdot a^* + (a + b \cdot a^* \cdot b) \cdot e_0 \leq e_0 \]
(4)
Automata to expressions — solving equations

Recall the constraints we derived:

\[a \cdot e_0 + b \cdot e_1 \leq e_0 \quad (1) \]

\[(1 + b \cdot e_0) + a \cdot e_1 \leq e_1 \quad (2) \]

By the fixpoint axiom:

\[a^* \cdot (1 + b \cdot e_0) \leq e_1 \quad (3) \]

Filling (3) into (1)

\[b \cdot a^* + (a + b \cdot a^* \cdot b) \cdot e_0 \leq e_0 \quad (4) \]

Applying the fixpoint rule to (4):

\[(a + b \cdot a^* \cdot b)^* \cdot b \cdot a^* \leq e_0 \]
Automata to expressions — solving automata

Definition (Solution)
Let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton.

A solution to A is a function $s : Q \rightarrow E$, such that for all $q \in Q$ it holds that

$$[q \in F] + \sum_{q \xrightarrow{a} q'} a \cdot s(q') \leq s(q)$$
Automata to expressions — solving automata

Definition (Solution)

Let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton.

A *solution* to A is a function $s : Q \rightarrow \mathbb{E}$, such that for all $q \in Q$ it holds that

$$[q \in F] + \sum_{q \xrightarrow{a} q'} a \cdot s(q') \leq s(q)$$

Example:

![Automaton Diagram]

$$0 + a \cdot s(q_0) + b \cdot s(q_1) \leq s(q_0)$$

$$1 + a \cdot s(q_1) + b \cdot s(q_0) \leq s(q_1)$$
Definition (Least solution)
Let A be an automaton, and let s be a solution to A.

We say that s is a least solution to A when s is (pointwise) least w.r.t. \leq; i.e:

$$\forall \text{ solutions } s', q \in Q. \quad s(q) \leq s'(q)$$
Definition (Least solution)
Let A be an automaton, and let s be a solution to A.
We say that s is a least solution to A when s is (pointwise) least w.r.t. \leq; i.e:

$$\forall \text{ solutions } s', q \in Q. \ s(q) \leq s'(q)$$

Lemma
Let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton, and let $s : Q \rightarrow \mathbb{E}$ be a least solution to A.
Then $\llbracket s(q) \rrbracket_{\mathbb{E}} = L(q)$ for all $q \in Q$.
Vectors and matrices

Definition (Vectors and matrices)
Let S be a set.

An *S-vector (over E)* is a function $v : S \to E$.

An *S-matrix (over E)* is a function $M : S \times S \to E$.
Vectors and matrices — example

Ex.: let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton; define:

$$M_A(q, q') = \sum_{q \xrightarrow{a} q'} a$$
Vectors and matrices — example

Ex.: let \(A = \langle Q, \rightarrow, I, F \rangle \) be an automaton; define:

\[
M_A(q, q') = \sum_{q \xrightarrow{a} q'} a
\]

Can write out matrices as tables, vectors as columns:

\[
M_A = \begin{pmatrix}
a & b \\
b & a
\end{pmatrix}
\]

\[
s = \begin{pmatrix}
e_0 \\
e_1
\end{pmatrix}
\]
Vectors and matrices — example

Ex.: let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton; define:

$$M_A(q, q') = \sum_{q \rightarrow a q'} a$$

Can write out matrices as tables, vectors as columns:

$$M_A = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \quad \quad s = \begin{bmatrix} e_0 \\ e_1 \end{bmatrix}$$
Vectors and matrices — operations

Definition (Operations and equivalence on vectors and matrices)
Let S be a finite set, let s, t be S-vectors, and let M be an S-matrix.
Vectors and matrices — operations

Definition (Operations and equivalence on vectors and matrices)
Let S be a finite set, let s, t be S-vectors, and let M be an S-matrix.
The S-vectors $s + t$ and $M \cdot s$ are defined by

\[
(s + t)(x) = s(x) + t(x) \quad \quad (M \cdot s)(x) = \sum_{y \in S} M(x, y) \cdot s(y)
\]

Lastly, we extend equivalence to S-vectors in a pointwise manner:
$s \equiv t \iff \forall x \in S. s(x) \equiv t(x)$

Just like before $s \leq t \iff s + t \equiv t$.
Definition (Operations and equivalence on vectors and matrices)

Let S be a finite set, let s, t be S-vectors, and let M be an S-matrix.

The S-vectors $s + t$ and $M \cdot s$ are defined by

$$(s + t)(x) = s(x) + t(x) \quad \quad (M \cdot s)(x) = \sum_{y \in S} M(x, y) \cdot s(y)$$

Lastly, we extend equivalence to S-vectors in a pointwise manner:

$$s \equiv t \iff \forall x \in S. \ s(x) \equiv t(x)$$

Just like before $s \leq t \iff s + t \equiv t$.
Vectors and matrices — operations

\[
\begin{align*}
0 + a \cdot s(q_0) + b \cdot s(q_1) & \leq s(q_0) \\
1 + b \cdot s(q_0) + a \cdot s(q_1) & \leq s(q_1)
\end{align*}
\] \iff
\[
\begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} a & b \\ b & a \end{bmatrix} \cdot \begin{bmatrix} s(q_0) \\ s(q_1) \end{bmatrix} \leq \begin{bmatrix} s(q_0) \\ s(q_1) \end{bmatrix}
\]
Vectors and matrices — operations

\[
\begin{align*}
0 + a \cdot s(q_0) + b \cdot s(q_1) & \leq s(q_0) \\
1 + b \cdot s(q_0) + a \cdot s(q_1) & \leq s(q_1)
\end{align*}
\]

\[
\begin{align*}
& \iff \\
& \left\{ \begin{array}{c}
0 + a \cdot s(q_0) + b \cdot s(q_1) \\
1 + b \cdot s(q_0) + a \cdot s(q_1)
\end{array} \right\} \iff \begin{bmatrix} 0 & 1 \\ a & b \end{bmatrix} \cdot \begin{bmatrix} s(q_0) \\ s(q_1) \end{bmatrix} \leq \begin{bmatrix} s(q_0) \\ s(q_1) \end{bmatrix}
\end{align*}
\]

\[
\begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} a & b \\ b & a \end{bmatrix} \cdot \begin{bmatrix} s(q_0) \\ s(q_1) \end{bmatrix}
\]
Vectors and matrices — operations

\[\begin{align*}
0 + a \cdot s(q_0) + b \cdot s(q_1) & \leq s(q_0) \\
1 + b \cdot s(q_0) + a \cdot s(q_1) & \leq s(q_1)
\end{align*}\]

\[\begin{align*}
\left\{ \begin{array}{c}
0 + a \cdot s(q_0) + b \cdot s(q_1) \\
1 + b \cdot s(q_0) + a \cdot s(q_1)
\end{array} \right\} & \iff
\begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} a & b \\ b & a \end{bmatrix} \cdot \begin{bmatrix} s(q_0) \\ s(q_1) \end{bmatrix} \leq \begin{bmatrix} s(q_0) \\ s(q_1) \end{bmatrix}
\end{align*}\]

\[\begin{align*}
\begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} a & b \\ b & a \end{bmatrix} \cdot \begin{bmatrix} s(q_0) \\ s(q_1) \end{bmatrix} & = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} a \cdot s(q_0) + b \cdot s(q_1) \\ b \cdot s(q_0) + a \cdot s(q_1) \end{bmatrix}
\end{align*}\]
Vectors and matrices — operations

\[
\begin{align*}
0 + a \cdot s(q_0) + b \cdot s(q_1) & \leq s(q_0) \\
1 + b \cdot s(q_0) + a \cdot s(q_1) & \leq s(q_1)
\end{align*}
\]
Solutions to automata, via matrices

Lemma
Let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton, and define

$$M_A(q, q') = \sum_{q \xrightarrow{a} q'} a$$

$$b_A(q) = [q \in F]$$

A Q-vector s is a solution to A if and only if $b_A + M_A \cdot s \leq s$.
Solutions to automata, via matrices

Lemma
Let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton, and define

$$M_A(q, q') = a \sum_{q \rightarrow a q'}$$

$$b_A(q) = [q \in F]$$

A Q-vector s is a solution to A if and only if $b_A + M_A \cdot s \leq s$.

Corollary
Let s be a Q-vector. The following are equivalent:

1. s is the least solution to A
2. s is the least Q-vector such that $b_A + M_A \cdot s \leq s$.
Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct the least Q-vector s such that $b + M \cdot s \leq s$.

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct the least Q-vector s such that $b + M \cdot s \leq s$.

Definition

Let S be a set, let b be an S-vector, and let $e \in E$.

We write $b \cdot e$ for the S-vector given by $(b \cdot e)(s) = b(s) \cdot e$.
Solutions to automata, via matrices

Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e. \ b \diamond e + M \cdot t \leq t \implies s \circ e \leq t$$

Definition
Let S be a set, let b be an S-vector, and let $e \in \mathbb{R}$.
We write $b \diamond e$ for the S-vector given by $(b \diamond e)(s) = b(s) \cdot e.$
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \forall t, e. \ b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof.
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e. \quad b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof.

By induction on Q. In the base, where $Q = \emptyset$, the claim holds immediately.
Solutions to automata, via matrices

Theorem

Let \(Q \) be a finite set, with \(M \) a \(Q \)-matrix and \(b \) a \(Q \)-vector.

We can construct a \(Q \)-vector \(s \) such that both of the following hold:

\[
\forall t, e. \quad b + M \cdot s \leq s, \quad e + M \cdot t \leq t \implies s \cdot e \leq t
\]

Proof.

For the inductive step, let \(Q = Q' \cup \{p\} \), with \(p \notin Q' \).
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e. \quad b \cdot e + M \cdot t \leq t \implies s \cdot e \leq t$$

Proof.

For the inductive step, let $Q = Q' \cup \{p\}$, with $p \notin Q'$.

Choose the Q'-matrix M' and Q'-vector b' by setting

$$M'(q, q') = M(q, q') + M(q, p) \cdot M(p, p)^* \cdot M(p, q')$$

$$b'(q) = b(q) + M(q, p) \cdot M(p, p)^* \cdot b(p)$$
Solutions to automata, via matrices

Theorem

Let \(Q \) be a finite set, with \(M \) a \(Q \)-matrix and \(b \) a \(Q \)-vector.

We can construct a \(Q \)-vector \(s \) such that both of the following hold:

\[
\begin{align*}
 b + M \cdot s & \leq s & \forall t, e. \quad b \cdot e + M \cdot t & \leq t \implies s \cdot e \leq t \\
\end{align*}
\]

Proof (cont’d).

By induction, we can compute a \(Q' \)-vector \(s' \), satisfying

\[
\begin{align*}
 b' + M' \cdot s' & \leq s' & \forall t', e. \quad b' \cdot e + M' \cdot t' & \leq t' \implies s' \cdot e \leq t' \\
\end{align*}
\]
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, \ e. \ b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof (cont’d).

Define the Q-vector s by

$$s(q) = \begin{cases} s'(q) \\ M(p, p)^* \cdot \left(b(p) + \sum_{q' \in Q'} M(p, q') \cdot s'(q')\right) & q = p \end{cases} \quad q \in Q'$$
Solutions to automata, via matrices

Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e. \quad b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof (cont’d).

$$(b + M \cdot s)(q) = b(q) + \sum_{q' \in Q} M(q, q') \cdot s(q')$$
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e \quad b \preceq e + M \cdot t \leq t \implies s \preceq e \leq t$$

Proof (cont’d).

$$(b + M \cdot s)(q) \equiv b(q) + M(q, p) \cdot s(p) + \sum_{q' \in Q'} M(q, q') \cdot s(q')$$
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e. \quad b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof (cont’d).

$$(b + M \cdot s)(q) \equiv b(q) + M(q, p) \cdot M(p, p)^* \cdot \left(b(p) + \sum_{q' \in Q'} M(p, q') \cdot s'(q') \right)$$

$$+ \sum_{q' \in Q'} M(q, q') \cdot s(q') \quad (†)$$
Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

\[b + M \cdot s \leq s \quad \forall t, \text{ e. } b \odot e + M \cdot t \leq t \implies s \odot e \leq t \]

Proof (cont’d).

If $q \in Q'$, then we can derive:

\[
\begin{align*}
(b + M \cdot s)(q) & \equiv b(q) + M(q, p) \cdot M(p, p)^* \cdot b(p) \\
& \quad + M(q, p) \cdot M(p, p)^* \cdot \sum_{q' \in Q'} M(p, q') \cdot s'(q') \\
& \quad + \sum_{q' \in Q'} M(q, q') \cdot s'(q')
\end{align*}
\]
Solutions to automata, via matrices

Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

\[b + M \cdot s \leq s \quad \forall t, \quad e \vdash e + M \cdot t \leq t \implies s \vdash e \leq t \]

Proof (cont’d).
If $q \in Q'$, then we can derive:

\[
(b + M \cdot s)(q) \equiv b(q) + M(q, p) \cdot M(p, p)^* \cdot b(p) \\
+ \sum_{q' \in Q'} (M(q, q') + M(q, p) \cdot M(p, p)^* \cdot M(p, q')) \cdot s'(q')
\]
Solutions to automata, via matrices

Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector. We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e. b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof (cont’d).
If $q \in Q'$, then we can derive:

$$(b + M \cdot s)(q) \equiv b(q) + M(q, p) \cdot M(p, p)^* \cdot b(p)$$

$$+ \sum_{q' \in Q'} (M(q, q') + M(q, p) \cdot M(p, p)^* \cdot M(p, q')) \cdot s'(q')$$

$$\equiv b'(q) + \sum_{q' \in Q'} M'(q, q') \cdot s'(q')$$
Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e. \ b \neq e + M \cdot t \leq t \implies s \neq e \leq t$$

Proof (cont’d).
If $q \in Q'$, then we can derive:

$$(b + M \cdot s)(q) \equiv b(q) + M(q, p) \cdot M(p, p)^* \cdot b(p)$$

$$+ \sum_{q' \in Q'} (M(q, q') + M(q, p) \cdot M(p, p)^* \cdot M(p, q')) \cdot s'(q')$$

$$\equiv b'(q) + \sum_{q' \in Q'} M'(q, q') \cdot s'(q') = (b' + M' \cdot s')(q)$$
Solutions to automata, via matrices

Theorem
Let \(Q \) be a finite set, with \(M \) a \(Q \)-matrix and \(b \) a \(Q \)-vector.
We can construct a \(Q \)-vector \(s \) such that both of the following hold:

\[
\forall t, e. \ b + M \cdot s \leq s \\
\Rightarrow \ b + e + M \cdot t \leq t \implies s \cdot e \leq t
\]

Proof (cont’d).
If \(q \in Q' \), then we can derive:

\[
(b + M \cdot s)(q) \equiv b(q) + M(q, p) \cdot M(p, p)^* \cdot b(p) \\
+ \sum_{q' \in Q'} (M(q, q') + M(q, p) \cdot M(p, p)^* \cdot M(p, q')) \cdot s'(q') \\
\equiv b'(q) + \sum_{q' \in Q'} M'(q, q') \cdot s'(q') = (b' + M' \cdot s')(q) \leq s'(q)
\]
Solutions to automata, via matrices

Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
$$\forall t, e. \ b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof (cont’d).
If $q \in Q'$, then we can derive:

$$(b + M \cdot s)(q) \equiv b(q) + M(q, p) \cdot M(p, p)^* \cdot b(p)$$
$$+ \sum_{q' \in Q'} (M(q, q') + M(q, p) \cdot M(p, p)^* \cdot M(p, q')) \cdot s'(q')$$

$$\equiv b'(q) + \sum_{q' \in Q'} M'(q, q') \cdot s'(q') = (b' + M' \cdot s')(q) \leq s'(q) = s(q)$$
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e. \quad b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof (cont’d).

If $q = p$, then we can derive:

$$(b + M \cdot s)(p) \equiv b(p) + M(p, p) \cdot M(p, p)^* \cdot \left(b(p) + \sum_{q' \in Q'} M(p, q') \cdot s'(q') \right)$$

$$+ \sum_{q' \in Q'} M(p, q') \cdot s(q')$$
Solutions to automata, via matrices

Theorem
Let \(Q \) be a finite set, with \(M \) a \(Q \)-matrix and \(b \) a \(Q \)-vector.
We can construct a \(Q \)-vector \(s \) such that both of the following hold:

\[
b + M \cdot s \leq s \quad \forall t, e. \quad b \circ e + M \cdot t \leq t \implies s \circ e \leq t
\]

Proof (cont’d).
If \(q = p \), then we can derive:

\[
(b + M \cdot s)(p) \equiv (1 + M(p, p) \cdot M(p, p)^*) \cdot \left(b(p) + \sum_{q' \in Q'} M(p, q') \cdot s'(q') \right)
\]
Solutions to automata, via matrices

Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, \quad e \cdot b \leq e + M \cdot t \leq t \implies s \leq t$$

Proof (cont’d).
If $q = p$, then we can derive:

$$(b + M \cdot s)(p) \equiv M(p, p)^* \cdot \left(b(p) + \sum_{q' \in Q'} M(p, q') \cdot s(q') \right)$$
Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, \text{ e. } b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof (cont’d).
If $q = p$, then we can derive:

$$(b + M \cdot s)(p) \equiv M(p, p) \ast \left(b(p) + \sum_{q' \in Q'} M(p, q') \cdot s'(q') \right)$$

$$= s(p)$$
Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector. We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e \quad b \preceq e + M \cdot t \leq t \implies s \preceq e \leq t$$

Proof (cont’d).
So, we know that $b + M \cdot s \leq s$.
What about the second condition?
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$

for all t, e. $b \odot e + M \cdot t \leq t \implies s \odot e \leq t$

Proof (cont’d).

Let $e \in \mathbb{E}$, and suppose t is a Q-vector such that $b \odot e + M \cdot t \leq t$.

Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e. \; b \cdot e + M \cdot t \leq t \implies s \cdot e \leq t$$

Proof (cont’d).
Let $e \in E$, and suppose t is a Q-vector such that $b \cdot e + M \cdot t \leq t$.

$$b(p) \cdot e + M(p, p) \cdot t(p) + \sum_{q' \in Q'} M(p, q') \cdot t(q')$$

$$\equiv b(p) \cdot e + \sum_{q' \in Q} M(p, q') \cdot s(q') \leq t(p)$$
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

\[b + M \cdot s \leq s \quad \forall t, e. \quad b \cdot e + M \cdot t \leq t \implies s \cdot e \leq t \]

Proof (cont’d).

Let $e \in E$, and suppose t is a Q-vector such that $b \cdot e + M \cdot t \leq t$.

\[
M(p, p)^* \cdot \left(b(p) \cdot e + \sum_{q' \in Q'} M(p, q') \cdot t(q') \right) \leq t(p) \tag{§}
\]
Solutions to automata, via matrices

Theorem
Let \(Q \) be a finite set, with \(M \) a \(Q \)-matrix and \(b \) a \(Q \)-vector.
We can construct a \(Q \)-vector \(s \) such that both of the following hold:

\[
 b + M \cdot s \leq s \quad \forall t, e. \quad b + e + M \cdot t \leq t \implies s + e \leq t
\]

Proof (cont’d).
Let the \(Q' \)-vector \(t' \) be given by \(t'(q) = t(q) \).
Claim: \(b' + e + M' \cdot t' \leq t' \).
Solutions to automata, via matrices

Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, \; e \cdot b + e + M \cdot t \leq t \implies s \cdot e \leq t$$

Proof (cont’d).
If $q \in Q'$, we derive as follows:

$$(b' \cdot e + M' \cdot t')(q) = b'(q) \cdot e + \sum_{q' \in Q'} M'(q, q') \cdot t'(q')$$
Solutions to automata, via matrices

Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e. \quad b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof (cont’d).
If $q \in Q'$, we derive as follows:

$$(b' \circ e + M' \cdot t')(q) \equiv b(q) \cdot e + M(q, p) \cdot M(p, p)^* \cdot b(p) \cdot e$$

$$+ \sum_{q' \in Q'} (M(q, q') + M(q, p) \cdot M(p, p)^* \cdot M(p, q')) \cdot t'(q')$$
Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector. We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, \ e. \ b \odot e + M \cdot t \leq t \implies s \odot e \leq t$$

Proof (cont’d).

If $q \in Q'$, we derive as follows:

$$(b' \odot e + M' \cdot t')(q) \equiv b(q) \cdot e + M(q, p) \cdot M(p, p)^* \cdot \left(b(p) \cdot e + \sum_{q' \in Q'} M(p, q') \cdot t(q') \right)$$

$$+ \sum_{q' \in Q'} M(q, q') \cdot t(q')$$
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
$$\forall t, e. \; b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof (cont’d).

If $q \in Q'$, we derive as follows:

$$(b' \circ e + M' \cdot t')(q) \leq b(q) \cdot e + M(q, p) \cdot t(p) + \sum_{q' \in Q'} M(q, q') \cdot t(q')$$
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
$$\forall t, e. \ b \cdot e + M \cdot t \leq t \implies s \cdot e \leq t$$

Proof (cont’d).

If $q \in Q'$, we derive as follows:

$$(b' \cdot e + M' \cdot t')(q) \leq b(q) \cdot e + \sum_{q' \in Q} M(q, q') \cdot t(q')$$
Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$ \hspace{1cm} \forall t, \; e. \; b \; \# \; e + M \cdot t \leq t \implies s \; \# \; e \leq t$$

Proof (cont’d).
If $q \in Q'$, we derive as follows:

$$(b' \; \# \; e + M' \cdot t')(q) \leq b(q) \cdot e + \sum_{q' \in Q} M(q, q') \cdot t(q')$$

$$\equiv (b \; \# \; e + M \cdot t)(q) \leq t(q) = t'(q)$$
Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, e. \ b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof (cont’d).
If $q \in Q'$, we derive as follows:

$$(b' \circ e + M' \cdot t')(q) \leq b(q) \cdot e + \sum_{q' \in Q} M(q, q') \cdot t(q')$$

$$\equiv (b \circ e + M \cdot t)(q) \leq t(q) = t'(q)$$

Now $b' \circ e + M' \cdot t' \leq t$. By the induction hypothesis, $s' \circ e \leq t'$.

Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector.
We can construct a Q-vector s such that both of the following hold:

\[b + M \cdot s \leq s \quad \forall t, e. \quad b \cdot e + M \cdot t \leq t \implies s \cdot e \leq t \]

Proof (cont’d).
If $q = p$, then we derive:

\[s(p) \cdot e \equiv M(p, p)^\ast \cdot \left(b(p) + \sum_{q' \in Q'} M(p, q') \cdot s'(q') \right) \cdot e \]
Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector. We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, \quad e \cdot b + M \cdot t \leq t \quad \Rightarrow \quad s \cdot e \leq t$$

Proof (cont’d).
If $q = p$, then we derive:

$$s(p) \cdot e \equiv M(p, p)^* \cdot \left(b(p) \cdot e + \sum_{q' \in Q'} M(p, q') \cdot s'(q') \cdot e \right)$$
Theorem

Let \(Q \) be a finite set, with \(M \) a \(Q \)-matrix and \(b \) a \(Q \)-vector.

We can construct a \(Q \)-vector \(s \) such that both of the following hold:

\[
\begin{align*}
 b + M \cdot s &\leq s \\
 \forall t, e. \quad b \otimes e + M \cdot t &\leq t \implies s \otimes e \leq t
\end{align*}
\]

Proof (cont’d).

If \(q = p \), then we derive:

\[
s(p) \cdot e \leq M(p, p)^* \cdot \left(b(p) \cdot e + \sum_{q' \in Q'} M(p, q') \cdot t'(q') \right)
\]
Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector. We can construct a Q-vector s such that both of the following hold:

\[b + M \cdot s \leq s \quad \forall t, e. \quad b \circ e + M \cdot t \leq t \Rightarrow s \circ e \leq t \]

Proof (cont’d).

If $q = p$, then we derive:

\[
s(p) \cdot e \leq M(p, p)^* \cdot \left(b(p) \cdot e + \sum_{q' \in Q'} M(p, q') \cdot t'(q') \right)
\]

\[\leq t(p) \]
Theorem
Let Q be a finite set, with M a Q-matrix and b a Q-vector. We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s \quad \forall t, \quad e. \quad b \circ e + M \cdot t \leq t \implies s \circ e \leq t$$

Proof (cont’d).
If $q = p$, then we derive:

$$s(p) \cdot e \leq M(p, p)^* \cdot \left(b(p) \cdot e + \sum_{q' \in Q'} M(p, q') \cdot t'(q') \right)$$

$$\leq t(p)$$

Conclusion: $s \circ e \leq t$, as desired.
Given an automaton A with state q, we can compute e such that $L_A(q) = \begin{bmatrix} e \end{bmatrix}_E$:

- Compute the matrix M_A and the vector b_A.
- Construct the least vector s such that $b_A + M_A \cdot s \leq s$.
- This vector solves A; we can choose $e = s(q)$.
Some linear algebra

Given a Q-matrix M, we can compute for each Q-vector b a least Q-vector s such that $b + M \cdot s \leq s$. This induces a map solve_M on Q-vectors.
Given a Q-matrix M, we can compute for each Q-vector b a least Q-vector s such that $b + M \cdot s \leq s$. This induces a map solve_M on Q-vectors.

In fact, this map is linear in the sense that

$$\text{solve}_M(b \circ e) = \text{solve}_M(b) \circ e \quad \text{solve}_M(b_1 + b_2) = \text{solve}_M(b_1) + \text{solve}_M(b_2)$$
Some linear algebra

Given a Q-matrix M, we can compute for each Q-vector b a least Q-vector s such that $b + M \cdot s \leq s$. This induces a map solve_M on Q-vectors.

In fact, this map is linear in the sense that

$$\text{solve}_M(b \oplus e) = \text{solve}_M(b) \oplus e \quad \text{solve}_M(b_1 + b_2) = \text{solve}_M(b_1) + \text{solve}_M(b_2)$$

Linear algebra tells us that solve_M is represented by a matrix!
Lemma
Let M be a Q-matrix. We can construct a matrix M^* such that the following hold:

(i) if s and b are Q-vectors such that $b + M \cdot s \leq s$, then $M^* \cdot b \leq s$; and

(ii) $1 + M \cdot M^* \equiv M^*$, where 1 is the Q-matrix given by $1(q, q') = [q = q']$.

Proof sketch.
For $q \in Q$, let u_q be the Q-vector given by $u_q(q') = [q = q']$.
Star of a matrix

Lemma
Let M be a Q-matrix. We can construct a matrix M^* such that the following hold:

(i) if s and b are Q-vectors such that $b + M \cdot s \leq s$, then $M^* \cdot b \leq s$; and

(ii) $1 + M \cdot M^* \equiv M^*$, where 1 is the Q-matrix given by $1(q, q') = [q = q']$.

Proof sketch.
For $q \in Q$, let u_q be the Q-vector given by $u_q(q') = [q = q']$.

Let s_q be the least Q-vector such that $u_q + M \cdot s_q \leq s_q$.
Lemma

Let M be a Q-matrix. We can construct a matrix M^* such that the following hold:

(i) if s and b are Q-vectors such that $b + M \cdot s \leq s$, then $M^* \cdot b \leq s$; and

(ii) $1 + M \cdot M^* \equiv M^*$, where 1 is the Q-matrix given by $1(q, q') = [q = q']$.

Proof sketch.

For $q \in Q$, let u_q be the Q-vector given by $u_q(q') = [q = q']$.

Let s_q be the least Q-vector such that $u_q + M \cdot s_q \leq s_q$.

Choose $M^*(q, q') = s_{q'}(q)$.

\qed
Lemma
Let M be a Q-matrix. We can construct a matrix M^* such that the following hold:
(i) if s and b are Q-vectors such that $b + M \cdot s \leq s$, then $M^* \cdot b \leq s$; and
(ii) $1 + M \cdot M^* \equiv M^*$, where 1 is the Q-matrix given by $1(q, q') = [q = q']$.

Proof sketch.
For $q \in Q$, let u_q be the Q-vector given by $u_q(q') = [q = q']$.
Let s_q be the least Q-vector such that $u_q + M \cdot s_q \leq s_q$.
Choose $M^*(q, q') = s_{q'}(q)$.

Corollary
Let M, B and S be Q-matrices. If $B + M \cdot S \leq S$, then $M^* \cdot B \leq S$.

Lemma

Let M be a Q-matrix. We can construct a matrix M^\dagger satisfying

$$1 + M^\dagger \cdot M = M^\dagger \quad B + S \cdot M \leq S \implies B \cdot M^\dagger \leq S$$
Lemma

Let M be a Q-matrix. We can construct a matrix M^\dagger satisfying

\[1 + M^\dagger \cdot M = M^\dagger \]

\[B + S \cdot M \leq S \implies B \cdot M^\dagger \leq S \]

Corollary

Let M be a Q-matrix. Now $M^* = M^\dagger$.
Dagger of a matrix

Lemma
Let M be a Q-matrix. We can construct a matrix M^\dagger satisfying
\[
1 + M^\dagger \cdot M = M^\dagger \quad \text{and} \quad B + S \cdot M \leq S \implies B \cdot M^\dagger \leq S
\]

Corollary
Let M be a Q-matrix. Now $M^* = M^\dagger$.

Proof sketch.
Show that $1 + M \cdot M^\dagger \leq M^\dagger$ and $1 + M^* \cdot M \leq M^\dagger$. □
Lemma
Let M be a Q-matrix. We can construct a matrix M^\dagger satisfying

$$1 + M^\dagger \cdot M = M^\dagger \quad B + S \cdot M \leq S \implies B \cdot M^\dagger \leq S$$

Corollary
Let M be a Q-matrix. Now $M^* = M^\dagger$.

Proof sketch.
Show that $1 + M \cdot M^\dagger \leq M^\dagger$ and $1 + M^* \cdot M \leq M^\dagger$.

The upshot: matrices of KA terms satisfy the laws of KA!
Next lecture

- Connect least solutions and (bi)simulations.
Next lecture

- Connect least solutions and (bi)simulations.
- The round-trip theorem.
Next lecture

- Connect least solutions and (bi)simulations.
- The round-trip theorem.
- The completeness theorem.