Kleene Algebra — Lecture 4

ESSLLI 2023

Last lecture

- Automata as language acceptors, and decidability of bisimilarity.
- ▶ One half of Kleene's theorem: expressions to automata.
- ▶ Antimirov's construction: automaton with expressions as states.
- ▶ The Fundamental Theorem of KA.

Today's lecture

- ▶ The *other* half of Kleene's theorem: automata to expressions.
- ▶ Approach: solving a system of equations using the laws of KA.
- Matrices and vectors over expressions as a helpful tool.

Automata to expressions — statement

Theorem (Kleene '56)

Let $A = \langle Q, \rightarrow, I, F \rangle$ be a finite automaton, with $q \in Q$.

We can construct $e \in \mathbb{E}$ such that $[\![e]\!]_{\mathbb{E}} = L_{\mathcal{A}}(q)$.

From q_0 to q_0 , passing through q_0 and q_1 :

$$(a + b \cdot a^* \cdot b)^*$$

From
$$q_0$$
 to q_0 , passing through q_0 and q_1 : $(a + b \cdot a^* \cdot b)^*$

From q_1 to q_1 , passing through q_1 but not through q_0 : a*

From q_0 to q_0 , passing through q_0 and q_1 :

From q_1 to q_1 , passing through q_1 but not through q_0 :

 \mathtt{a}^*

From q_0 to q_1 :

 $(a + b \cdot a^* \cdot b)^* \cdot b \cdot a^*$.

 $(a + b \cdot a^* \cdot b)^*$

Suppose $\llbracket e_0 \rrbracket_{\mathbb{E}} = L(q_0)$, and $\llbracket e_1 \rrbracket_{\mathbb{E}} = L(q_1)$; then:

Suppose
$$\llbracket e_0 \rrbracket_{\mathbb{E}} = L(q_0)$$
, and $\llbracket e_1 \rrbracket_{\mathbb{E}} = L(q_1)$; then:

$$\mathtt{a} \cdot e_0 \leqq e_0 \qquad \qquad \mathtt{b} \cdot e_1 \leqq e_0 \qquad \qquad \mathtt{a} \cdot e_1 \leqq e_1 \qquad \qquad \mathtt{b} \cdot e_0 \leqq e_1 \qquad \qquad 1 \leqq e_1$$

$$b \cdot e_1 \leq e_0$$

$$\mathtt{a} \cdot e_1 \leqq e_1$$

$$o\cdot e_0 \leqq e_1$$

$$1 \leq e_1$$

$$a$$
 b
 q_0
 b

Suppose
$$\llbracket e_0 \rrbracket_{\mathbb{E}} = L(q_0)$$
, and $\llbracket e_1 \rrbracket_{\mathbb{E}} = L(q_1)$; then:

$$\mathtt{l} + \mathtt{a} \cdot e_1 + \mathtt{b} \cdot e_0 \leqq e_1$$

Recall the constraints we derived:

$$\mathbf{a} \cdot e_0 + \mathbf{b} \cdot e_1 \leq e_0 \tag{1}$$

$$1 + \mathbf{a} \cdot e_1 + \mathbf{b} \cdot e_0 \leq e_1 \tag{2}$$

Recall the constraints we derived:

$$\mathbf{a} \cdot e_0 + \mathbf{b} \cdot e_1 \leq e_0 \tag{1}$$
$$(1 + \mathbf{b} \cdot e_0) + \mathbf{a} \cdot e_1 \leq e_1 \tag{2}$$

Recall the constraints we derived:

$$\mathbf{a} \cdot e_0 + \mathbf{b} \cdot e_1 \leq e_0 \tag{1}$$
$$(1 + \mathbf{b} \cdot e_0) + \mathbf{a} \cdot e_1 \leq e_1 \tag{2}$$

By the fixpoint axiom:

$$\mathtt{a}^*\cdot (1+\mathtt{b}\cdot e_0) \leqq e_1$$

(3)

Recall the constraints we derived:

$$a\cdot e_0+b\cdot e_1\leqq e_0 \tag{1}$$

$$(1+b\cdot e_0)+a\cdot e_1\leqq e_1 \tag{2}$$
 By the fixpoint axiom:

 $a \cdot e_0 + b \cdot e_1 \leq e_0$

$$\mathtt{a}^* \cdot (1 + \mathtt{b} \cdot e_0) \leqq e_1$$

 $a \cdot e_0 + b \cdot (a^* \cdot (1 + b \cdot e_0)) \leq e_0$

Recall the constraints we derived:

$$a\cdot e_0+b\cdot e_1\leqq e_0 \tag{1}$$

$$(1+b\cdot e_0)+a\cdot e_1\leqq e_1 \tag{2}$$
 By the fixpoint axiom:

 $a \cdot e_0 + b \cdot e_1 \leq e_0$

$$\mathtt{a}^* \cdot (1 + \mathtt{b} \cdot e_0) \leqq e_1$$

 $b \cdot a^* + (a + b \cdot a^* \cdot b) \cdot e_0 \leq e_0$

(3)

Recall the constraints we derived:

Applying the fixpoint rule to (4):

By the fixpoint axiom:

Filling (3) into (1)
$$b \cdot a^* + (a + b \cdot a^* \cdot b) \cdot e_0 \leq e_0$$

 $(1+b\cdot e_0)+a\cdot e_1\leq e_1$ (2)

 $\mathtt{a}^* \cdot (1 + \mathtt{b} \cdot e_0) \leq e_1$

 $a \cdot e_0 + b \cdot e_1 \leq e_0$

$$(a + b \cdot a^* \cdot b)^* \cdot b \cdot a^* \leq e_0$$

$$\mathbf{a}\cdot\mathbf{a}^* \leqq e_0$$

$$\cdot$$
 a $^* \leq e_0$

$$\mathbf{a}^* \leqq e_0$$

(1)

Definition (Solution)

Let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton.

A solution to A is a function $s:Q\to\mathbb{E}$, such that for all $q\in Q$ it holds that

$$[q \in F] + \sum_{\mathbf{a}, \mathbf{c}} \mathbf{a} \cdot s(q') \leqq s(q)$$

Definition (Solution)

Let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton.

A solution to A is a function $s:Q\to\mathbb{E}$, such that for all $q\in Q$ it holds that

$$[q \in F] + \sum_{q \stackrel{\mathtt{a}}{ o} q'} \mathtt{a} \cdot s(q') \leqq s(q)$$

Example:

$$egin{aligned} 0 + \mathtt{a} \cdot s(q_0) + \mathtt{b} \cdot s(q_1) & \leqq s(q_0) \ & 1 + \mathtt{a} \cdot s(q_1) + \mathtt{b} \cdot s(q_0) & \leqq s(q_1) \end{aligned}$$

Definition (Least solution)

Let A be an automaton, and let s be a solution to A.

We say that s is a *least* solution to A when s is (pointwise) least w.r.t. \leq ; i.e.

 \forall solutions $s', q \in Q$. $s(q) \leq s'(q)$

Definition (Least solution)

Let A be an automaton, and let s be a solution to A.

We say that s is a *least* solution to A when s is (pointwise) least w.r.t. \leq ; i.e.

$$\forall$$
 solutions $s', q \in Q$. $s(q) \leq s'(q)$

Lemma

Let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton, and let $s : Q \rightarrow \mathbb{E}$ be a least solution to A.

Then $[s(q)]_{\mathbb{E}} = L(q)$ for all $q \in Q$.

Vectors and matrices

Definition (Vectors and matrices)

Let S be a set.

An *S-vector* (over \mathbb{E}) is a function $v: S \to \mathbb{E}$.

An *S-matrix* (over \mathbb{E}) is a function $M: S \times S \to \mathbb{E}$.

Vectors and matrices — example

Ex.: let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton; define:

$$\mathit{M}_{A}(q,q') = \sum_{q \stackrel{\mathtt{a}}{
ightarrow} q'} \mathtt{a}$$

Vectors and matrices — example

Ex.: let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton; define:

$$\mathit{M}_{A}(q,q') = \sum_{q \stackrel{\mathtt{a}}{
ightarrow} q'} \mathtt{a}$$

Vectors and matrices — example

Ex.: let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton; define:

$$\mathit{M}_{A}(q,q') = \sum_{q \stackrel{\mathtt{a}}{
ightarrow} q'} \mathtt{a}$$

Can write out matrices as tables, vectors as columns:

$$M_{\mathcal{A}} = \left[egin{array}{ccc} \mathtt{a} & \mathtt{b} \\ \mathtt{b} & \mathtt{a} \end{array}
ight] \qquad \qquad s = \left[egin{array}{c} e_0 \\ e_1 \end{array}
ight]$$

Definition (Operations and equivalence on vectors and matrices) Let S be a finite set, let s, t be S-vectors, and let M be an S-matrix.

Definition (Operations and equivalence on vectors and matrices)

Let S be a finite set, let s, t be S-vectors, and let M be an S-matrix.

The S-vectors s + t and $M \cdot s$ are defined by

$$(s+t)(x) = s(x) + t(x) \qquad (M \cdot s)(x) = \sum_{y \in S} M(x,y) \cdot s(y)$$

Definition (Operations and equivalence on vectors and matrices)

Let S be a finite set, let s, t be S-vectors, and let M be an S-matrix.

The S-vectors s + t and $M \cdot s$ are defined by

$$(s+t)(x) = s(x) + t(x) \qquad (M \cdot s)(x) = \sum_{y \in S} M(x,y) \cdot s(y)$$

Lastly, we extend equivalence to S-vectors in a pointwise manner:

$$s \equiv t \iff \forall x \in S. \ s(x) \equiv t(x)$$

Just like before $s \leq t \iff s + t \equiv t$.

$$egin{array}{ll} 0+\mathtt{a}\cdot s(q_0)+\mathtt{b}\cdot s(q_1)&\leqq s(q_0)\ 1+\mathtt{b}\cdot s(q_0)+\mathtt{a}\cdot s(q_1)&\leqq s(q_1) \end{array} igg\} \iff \left[egin{array}{ll} 0\ 1 \end{array}
ight]+\left[egin{array}{ll} \mathtt{a} &\mathtt{b}\ \mathtt{b} &\mathtt{a} \end{array}
ight]\cdot\left[egin{array}{ll} s(q_0)\ s(q_1) \end{array}
ight] \le \left[egin{array}{ll} s(q_0)\ s(q_1) \end{array}
ight]$$

$$egin{array}{ll} 0+\mathtt{a}\cdot s(q_0)+\mathtt{b}\cdot s(q_1)&\leqq s(q_0)\ 1+\mathtt{b}\cdot s(q_0)+\mathtt{a}\cdot s(q_1)&\leqq s(q_1) \end{array} igg\} \iff \left[egin{array}{ll} 0\ 1 \end{array}
ight]+\left[egin{array}{ll} \mathtt{a} &\mathtt{b}\ \mathtt{b} &\mathtt{a} \end{array}
ight]\cdot\left[egin{array}{ll} s(q_0)\ s(q_1) \end{array}
ight] \le \left[egin{array}{ll} s(q_0)\ s(q_1) \end{array}
ight]$$

$$\left[egin{array}{c} 0 \ 1 \end{array}
ight] + \left[egin{array}{ccc} \mathtt{a} & \mathtt{b} \ \mathtt{b} & \mathtt{a} \end{array}
ight] \cdot \left[egin{array}{c} s(q_0) \ s(q_1) \end{array}
ight]$$

$$egin{array}{ll} 0+\mathtt{a}\cdot s(q_0)+\mathtt{b}\cdot s(q_1)&\leqq s(q_0)\ 1+\mathtt{b}\cdot s(q_0)+\mathtt{a}\cdot s(q_1)&\leqq s(q_1) \end{array} igg\} \iff \left[egin{array}{ll} 0\ 1 \end{array}
ight]+\left[egin{array}{ll} \mathtt{a} &\mathtt{b}\ \mathtt{b} &\mathtt{a} \end{array}
ight]\cdot\left[egin{array}{ll} s(q_0)\ s(q_1) \end{array}
ight] \le \left[egin{array}{ll} s(q_0)\ s(q_1) \end{array}
ight]$$

$$\left[egin{array}{c} 0 \ 1 \end{array}
ight] + \left[egin{array}{c} \mathtt{a} & \mathtt{b} \ \mathtt{b} & \mathtt{a} \end{array}
ight] \cdot \left[egin{array}{c} s(q_0) \ s(q_1) \end{array}
ight] = \left[egin{array}{c} 0 \ 1 \end{array}
ight] + \left[egin{array}{c} \mathtt{a} \cdot s(q_0) + \mathtt{b} \cdot s(q_1) \ \mathtt{b} \cdot s(q_0) + \mathtt{a} \cdot s(q_1) \end{array}
ight]$$

$$egin{array}{ll} 0+\mathtt{a}\cdot s(q_0)+\mathtt{b}\cdot s(q_1)&\leqq s(q_0)\ 1+\mathtt{b}\cdot s(q_0)+\mathtt{a}\cdot s(q_1)&\leqq s(q_1) \end{array} igg\} \iff \left[egin{array}{ll} 0\ 1 \end{array}
ight]+\left[egin{array}{ll} \mathtt{a} &\mathtt{b}\ \mathtt{b} &\mathtt{a} \end{array}
ight]\cdot\left[egin{array}{ll} s(q_0)\ s(q_1) \end{array}
ight] \le \left[egin{array}{ll} s(q_0)\ s(q_1) \end{array}
ight]$$

$$egin{bmatrix} 0 \ 1 \end{bmatrix} + egin{bmatrix} \mathtt{a} & \mathtt{b} \ \mathtt{b} & \mathtt{a} \end{bmatrix} \cdot egin{bmatrix} s(q_0) \ s(q_1) \end{bmatrix} = egin{bmatrix} 0 \ 1 \end{bmatrix} + egin{bmatrix} \mathtt{a} \cdot s(q_0) + \mathtt{b} \cdot s(q_1) \ \mathtt{b} \cdot s(q_0) + \mathtt{a} \cdot s(q_1) \end{bmatrix} = egin{bmatrix} 0 + \mathtt{a} \cdot s(q_0) + \mathtt{b} \cdot s(q_1) \ 1 + \mathtt{b} \cdot s(q_0) + \mathtt{a} \cdot s(q_1) \end{bmatrix}$$

Solutions to automata, via matrices

Lemma

Let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton, and define

$$M_A(q,q') = \sum_{q \stackrel{ ext{a}}{
ightarrow} q'} ext{a} \qquad \qquad b_A(q) = [q \in F]$$

A Q-vector s is a solution to A if and only if $b_A + M_A \cdot s \leq s$.

Solutions to automata, via matrices

Lemma

Let $A = \langle Q, \rightarrow, I, F \rangle$ be an automaton, and define

$$M_A(q,q') = \sum_{q \stackrel{ ext{a}}{
ightarrow} q'} ext{a} \qquad \qquad b_A(q) = [q \in F]$$

A Q-vector s is a solution to A if and only if $b_A + M_A \cdot s \leq s$.

Corollary

Let s be a Q-vector. The following are equivalent:

- 1. s is the least solution to A
- 2. s is the least Q-vector such that $b_A + M_A \cdot s \leq s$.

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct the least Q-vector s such that $b+M\cdot s\leqq s$.

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct the least Q-vector s such that $b+M\cdot s\leqq s$.

Definition

Let S be a set, let b be an S-vector, and let $e \in \mathbb{E}$.

We write $b \ \ e$ for the S-vector given by $(b \ \ e)(s) = b(s) \cdot e$.

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \ \ \ \ e + M \cdot t \leq t \implies s \ \ \ \ \ \ e \leq t$

Definition

Let S be a set, let b be an S-vector, and let $e \in \mathbb{E}$.

We write $b \, \stackrel{\circ}{,} \, e$ for the S-vector given by $(b \, \stackrel{\circ}{,} \, e)(s) = b(s) \cdot e$.

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \,
eq e + M \cdot t \leq t \implies s \,
eq e \leq t$

Proof.

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

Proof.

By induction on Q. In the base, where $Q=\emptyset$, the claim holds immediately.

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

Proof.

For the inductive step, let $Q = Q' \cup \{p\}$, with $p \notin Q'$.

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
vert_s e + M \cdot t \leq t \implies s \
vert_s e \leq t$

Proof.

For the inductive step, let $Q = Q' \cup \{p\}$, with $p \notin Q'$.

Choose the Q'-matrix M' and Q'-vector b' by setting

$$M'(q, q') = M(q, q') + M(q, p) \cdot M(p, p)^* \cdot M(p, q')$$

 $b'(q) = b(q) + M(q, p) \cdot M(p, p)^* \cdot b(p)$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \ \ \ e + M \cdot t \leq t \implies s \ \ \ e \leq t$

Proof (cont'd).

By induction, we can compute a Q'-vector s', satisfying

$$b' + M' \cdot s' \leqq s'$$
 $\forall t', e. \ b' \,
eg e + M' \cdot t' \leqq t' \implies s' \,
eg e \leqq t'$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eg e + M \cdot t \leq t \implies s \
eg e \leq t$

Proof (cont'd).

Define the Q-vector s by

$$s(q) = egin{cases} s'(q) & q \in Q' \ M(p,p)^* \cdot \left(b(p) + \sum_{q' \in Q'} M(p,q') \cdot s'(q')
ight) & q = p \end{cases}$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b+M\cdot s)(q)=b(q)+\sum_{q'\in Q}M(q,q')\cdot s(q')$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eg e + M \cdot t \leq t \implies s \
eg e \leq t$

Proof (cont'd).

$$(b+M\cdot s)(q)\equiv b(q)+M(q,p)\cdot s(p)+\sum_{q'\in Q'}M(q,q')\cdot s(q')$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b+M\cdot s)(q) \equiv b(q) + M(q,p) \cdot M(p,p)^* \cdot \left(b(p) + \sum_{q' \in Q'} M(p,q') \cdot s'(q')\right) + \sum_{q' \in Q'} M(q,q') \cdot s(q')$$

$$(\dagger)$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b+M\cdot s)(q) \equiv b(q) + M(q,p) \cdot M(p,p)^* \cdot b(p)$$

$$+ M(q,p) \cdot M(p,p)^* \cdot \sum_{q' \in Q'} M(p,q') \cdot s'(q')$$

$$+ \sum_{q' \in Q'} M(q,q') \cdot s'(q')$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b+M\cdot s)(q) \equiv b(q) + M(q,p) \cdot M(p,p)^* \cdot b(p)$$

$$+ \sum_{q' \in Q'} (M(q,q') + M(q,p) \cdot M(p,p)^* \cdot M(p,q')) \cdot s'(q')$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b + M \cdot s)(q) \equiv b(q) + M(q, p) \cdot M(p, p)^* \cdot b(p)$$

$$+ \sum_{q' \in Q'} (M(q, q') + M(q, p) \cdot M(p, p)^* \cdot M(p, q')) \cdot s'(q')$$

$$\equiv b'(q) + \sum_{q' \in Q'} M'(q, q') \cdot s'(q')$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \ ge + M \cdot t \leq t \implies s \ ge \leq t$

Proof (cont'd).

$$(b + M \cdot s)(q) \equiv b(q) + M(q, p) \cdot M(p, p)^* \cdot b(p)$$

$$+ \sum_{q' \in Q'} (M(q, q') + M(q, p) \cdot M(p, p)^* \cdot M(p, q')) \cdot s'(q')$$

$$\equiv b'(q) + \sum_{q' \in Q'} M'(q, q') \cdot s'(q') = (b' + M' \cdot s')(q)$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \ ge + M \cdot t \leq t \implies s \ ge \leq t$

Proof (cont'd).

$$(b + M \cdot s)(q) \equiv b(q) + M(q, p) \cdot M(p, p)^* \cdot b(p)$$

$$+ \sum_{q' \in Q'} (M(q, q') + M(q, p) \cdot M(p, p)^* \cdot M(p, q')) \cdot s'(q')$$

$$\equiv b'(q) + \sum_{q' \in Q'} M'(q, q') \cdot s'(q') = (b' + M' \cdot s')(q) \leq s'(q)$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b+M\cdot s)(q) \equiv b(q) + M(q,p) \cdot M(p,p)^* \cdot b(p)$$

$$+ \sum_{q' \in Q'} (M(q,q') + M(q,p) \cdot M(p,p)^* \cdot M(p,q')) \cdot s'(q')$$

$$\equiv b'(q) + \sum_{q' \in Q'} M'(q,q') \cdot s'(q') = (b' + M' \cdot s')(q) \leq s'(q) = s(q)$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \ \ \ e + M \cdot t \leq t \implies s \ \ \ e \leq t$

Proof (cont'd).

$$(b+M\cdot s)(p)\equiv b(p)+M(p,p)\cdot M(p,p)^*\cdot \left(b(p)+\sum_{q'\in Q'}M(p,q')\cdot s'(q')
ight) \ +\sum_{q'\in Q'}M(p,q')\cdot s(q')$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eg e + M \cdot t \leq t \implies s \
eg e \leq t$

Proof (cont'd).

$$(b+M\cdot s)(p)\equiv (1+M(p,p)\cdot M(p,p)^*)\cdot \left(b(p)+\sum_{q'\in Q'}M(p,q')\cdot s'(q')
ight)$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b+M\cdot s)(p)\equiv M(p,p)^*\cdot \left(b(p)+\sum_{q'\in Q'}M(p,q')\cdot s'(q')\right)$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b+M\cdot s)(p)\equiv M(p,p)^*\cdot \left(b(p)+\sum_{q'\in Q'}M(p,q')\cdot s'(q')
ight) \ =s(p)$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

So, we know that $b + M \cdot s \leq s$.

What about the second condition?

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

Let $e \in \mathbb{E}$, and suppose t is a Q-vector such that $b \,
ceil \, e + M \cdot t \leqq t$.

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

Proof (cont'd).

Let $e \in \mathbb{E}$, and suppose t is a Q-vector such that $b \circ e + M \cdot t \leq t$.

$$b(p) \cdot e + M(p,p) \cdot t(p) + \sum_{q' \in Q'} M(p,q') \cdot t(q')$$

 $\equiv b(p) \cdot e + \sum_{q' \in Q} M(p,q') \cdot s(q') \leq t(p)$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

Proof (cont'd).

Let $e \in \mathbb{E}$, and suppose t is a Q-vector such that $b \, \mathring{\ } \, e + M \cdot t \leqq t$.

$$M(p,p)^* \cdot \left(b(p) \cdot e + \sum_{q' \in Q'} M(p,q') \cdot t(q')\right) \leq t(p)$$
 (§)

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

Let the Q'-vector t' be given by t'(q) = t(q).

Claim: $b' \circ e + M' \cdot t' \leq t'$.

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b'\,\mathring{\ }_{,}^{\circ}\,e+M'\cdot t')(q)=b'(q)\cdot e+\sum_{q'\in Q'}M'(q,q')\cdot t'(q')$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

Proof (cont'd).

$$egin{aligned} (b'\,\mathring{s}\,e + M'\cdot t')(q) &\equiv b(q)\cdot e + M(q,p)\cdot M(p,p)^*\cdot b(p)\cdot e \ &\qquad + \sum_{q'\in Q'} (M(q,q') + M(q,p)\cdot M(p,p)^*\cdot M(p,q'))\cdot t'(q') \end{aligned}$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b'\ \stackrel{\circ}{\circ}\ e + M'\cdot t')(q) \equiv b(q)\cdot e + M(q,p)\cdot M(p,p)^*\cdot \left(b(p)\cdot e + \sum_{q'\in Q'} M(p,q')\cdot t(q')\right) + \sum_{q'\in Q'} M(q,q')\cdot t(q')$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b'\ \stackrel{\circ}{\circ}\ e + M'\cdot t')(q) \leqq b(q)\cdot e + M(q,p)\cdot t(p) + \sum_{q'\in Q'} M(q,q')\cdot t(q')$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b'\,\mathring{\circ}\,e+M'\cdot t')(q)\leqq b(q)\cdot e+\sum_{q'\in Q}M(q,q')\cdot t(q')$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eq e + M \cdot t \leq t \implies s \
eq e \leq t$

Proof (cont'd).

$$(b'\,\mathring{g}\,e + M'\cdot t')(q) \leqq b(q)\cdot e + \sum_{q'\in Q} M(q,q')\cdot t(q')$$

$$\equiv (b\,\mathring{g}\,e + M\cdot t)(q) \leqq t(q) = t'(q)$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

Proof (cont'd).

If $q \in Q'$, we derive as follows:

$$(b' \stackrel{\circ}{,} e + M' \cdot t')(q) \leq b(q) \cdot e + \sum_{q' \in Q} M(q, q') \cdot t(q')$$

$$\equiv (b \stackrel{\circ}{,} e + M \cdot t)(q) \leq t(q) = t'(q)$$

Now $b' \, \mathring{g} \, e + M' \cdot t' \leqq t$. By the induction hypothesis, $s' \, \mathring{g} \, e \leqq t'$.

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eg e + M \cdot t \leq t \implies s \
eg e \leq t$

Proof (cont'd).

$$s(p) \cdot e \equiv M(p,p)^* \cdot \left(b(p) + \sum_{q' \in Q'} M(p,q') \cdot s'(q')\right) \cdot e$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eg e + M \cdot t \leq t \implies s \
eg e \leq t$

Proof (cont'd).

$$s(p) \cdot e \equiv M(p, p)^* \cdot \left(b(p) \cdot e + \sum_{q' \in Q'} M(p, q') \cdot s'(q') \cdot e\right)$$

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \
eg e + M \cdot t \leq t \implies s \
eg e \leq t$

Proof (cont'd).

$$s(p) \cdot e \leq M(p,p)^* \cdot \left(b(p) \cdot e + \sum_{q' \in Q'} M(p,q') \cdot t'(q')\right)$$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

$$b + M \cdot s \leq s$$
 $\forall t, e. \ b \ \ \ \ e + M \cdot t \leq t \implies s \ \ \ \ \ e \leq t$

Proof (cont'd).

If q = p, then we derive:

$$s(p) \cdot e \leq M(p,p)^* \cdot \left(b(p) \cdot e + \sum_{q' \in Q'} M(p,q') \cdot t'(q')\right)$$

 $\leq t(p)$

Solutions to automata, via matrices

Theorem

Let Q be a finite set, with M a Q-matrix and b a Q-vector.

We can construct a Q-vector s such that both of the following hold:

Proof (cont'd).

If q = p, then we derive:

$$s(p) \cdot e \leq M(p,p)^* \cdot \left(b(p) \cdot e + \sum_{q' \in Q'} M(p,q') \cdot t'(q')\right)$$

 $\leq t(p)$

Conclusion: $s \circ e \leq t$, as desired.

The fruits of our labor

Given an automaton A with state q, we can compute e such that $L_A(q) = \llbracket e \rrbracket_{\mathbb{E}}$:

- ▶ Compute the matrix M_A and the vector b_A .
- ▶ Construct the least vector s such that $b_A + M_A \cdot s \leq s$.
- ▶ This vector solves A; we can choose e = s(q).

Some linear algebra

Given a Q-matrix M, we can compute for each Q-vector b a least Q-vector s such that $b+M\cdot s \leq s$. This induces a map solve M on Q-vectors.

Some linear algebra

Given a Q-matrix M, we can compute for each Q-vector b a least Q-vector s such that $b+M\cdot s \leqq s$. This induces a map $solve_M$ on Q-vectors.

In fact, this map is *linear* in the sense that

$$\operatorname{solve}_M(b \, \mathring{\circ} \, e) = \operatorname{solve}_M(b) \, \mathring{\circ} \, e \qquad \operatorname{solve}_M(b_1 + b_2) = \operatorname{solve}_M(b_1) + \operatorname{solve}_M(b_2)$$

Some linear algebra

Given a Q-matrix M, we can compute for each Q-vector b a least Q-vector s such that $b + M \cdot s \leq s$. This induces a map solve M on Q-vectors.

In fact, this map is *linear* in the sense that

$$\operatorname{solve}_M(b \, \mathring{\circ} \, e) = \operatorname{solve}_M(b) \, \mathring{\circ} \, e \qquad \operatorname{solve}_M(b_1 + b_2) = \operatorname{solve}_M(b_1) + \operatorname{solve}_M(b_2)$$

Linear algebra tells us that solve $_M$ is represented by a matrix!

Lemma

Let M be a Q-matrix. We can construct a matrix M^* such that the following hold:

- (i) if s and b are Q-vectors such that $b + M \cdot s \leq s$, then $M^* \cdot b \leq s$; and
- (ii) $\mathbf{1} + M \cdot M^* \equiv M^*$, where $\mathbf{1}$ is the Q-matrix given by $\mathbf{1}(q,q') = [q=q']$.

Proof sketch.

For $q \in Q$, let u_q be the Q-vector given by $u_q(q') = [q = q']$.

Lemma

Let M be a Q-matrix. We can construct a matrix M^* such that the following hold:

- (i) if s and b are Q-vectors such that $b + M \cdot s \leq s$, then $M^* \cdot b \leq s$; and
- (ii) $\mathbf{1} + M \cdot M^* \equiv M^*$, where $\mathbf{1}$ is the Q-matrix given by $\mathbf{1}(q,q') = [q=q']$.

Proof sketch.

For $q \in Q$, let u_q be the Q-vector given by $u_q(q') = [q = q']$.

Let s_q be the least Q-vector such that $u_q + M \cdot s_q \leq s_q$.

Lemma

Let M be a Q-matrix. We can construct a matrix M^* such that the following hold:

- (i) if s and b are Q-vectors such that $b + M \cdot s \leq s$, then $M^* \cdot b \leq s$; and
- (ii) $\mathbf{1} + M \cdot M^* \equiv M^*$, where $\mathbf{1}$ is the Q-matrix given by $\mathbf{1}(q,q') = [q=q']$.

Proof sketch.

For $q \in Q$, let u_q be the Q-vector given by $u_q(q') = [q = q']$.

Let s_q be the least Q-vector such that $u_q + M \cdot s_q \leqq s_q$.

Choose $M^*(q,q') = s_{q'}(q)$.

Lemma

Let M be a Q-matrix. We can construct a matrix M^* such that the following hold:

- (i) if s and b are Q-vectors such that $b + M \cdot s \leq s$, then $M^* \cdot b \leq s$; and
- (ii) $\mathbf{1} + M \cdot M^* \equiv M^*$, where $\mathbf{1}$ is the Q-matrix given by $\mathbf{1}(q, q') = [q = q']$.

Proof sketch.

For $q \in Q$, let u_q be the Q-vector given by $u_q(q') = [q = q']$.

Let s_q be the least Q-vector such that $u_q + M \cdot s_q \leq s_q$.

Choose $M^*(q, q') = s_{q'}(q)$.

Corollary

Let M, B and S be Q-matrices. If $B + M \cdot S \subseteq S$, then $M^* \cdot B \subseteq S$.

Lemma

Let M be a Q-matrix. We can construct a matrix M^{\dagger} satisfying

$$1 + M^{\dagger} \cdot M = M^{\dagger}$$

$$1 + M^{\dagger} \cdot M = M^{\dagger}$$
 $B + S \cdot M \leq S \implies B \cdot M^{\dagger} \leq S$

Lemma

Let M be a Q-matrix. We can construct a matrix M^{\dagger} satisfying

$$1 + M^{\dagger} \cdot M = M^{\dagger}$$

$$1 + M^{\dagger} \cdot M = M^{\dagger}$$
 $B + S \cdot M \leqq S \implies B \cdot M^{\dagger} \leqq S$

Corollary

Let M be a Q-matrix. Now $M^* = M^{\dagger}$.

Lemma

Let M be a Q-matrix. We can construct a matrix M^{\dagger} satisfying

$$1 + M^{\dagger} \cdot M = M^{\dagger}$$

$$1 + M^{\dagger} \cdot M = M^{\dagger}$$
 $B + S \cdot M \leq S \implies B \cdot M^{\dagger} \leq S$

Corollary

Let M be a Q-matrix. Now $M^* = M^{\dagger}$.

Proof sketch.

Show that $1 + M \cdot M^{\dagger} \leq M^{\dagger}$ and $1 + M^* \cdot M \leq M^{\dagger}$.

Lemma

Let M be a Q-matrix. We can construct a matrix M^{\dagger} satisfying

$$1 + M^{\dagger} \cdot M = M^{\dagger}$$

$$1 + M^{\dagger} \cdot M = M^{\dagger}$$
 $B + S \cdot M \leq S \implies B \cdot M^{\dagger} \leq S$

Corollary

Let M be a Q-matrix. Now $M^* = M^{\dagger}$.

Proof sketch.

Show that $1 + M \cdot M^{\dagger} \leq M^{\dagger}$ and $1 + M^* \cdot M \leq M^{\dagger}$.

The upshot: matrices of KA terms satisfy the laws of KA!

Next lecture

► Connect least solutions and (bi)simulations.

Next lecture

- ► Connect least solutions and (bi)simulations.
- ► The round-trip theorem.

Next lecture

- ► Connect least solutions and (bi)simulations.
- ► The round-trip theorem.
- ▶ The completeness theorem.