
Kleene Algebra — Lecture 3

ESSLLI 2023



Last lectures

▶ Language semantics abstract from meaning of symbols.

▶ This model is equivalent to the relational semantics.

▶ Teased questions of decidability and completeness.



Today’s lecture

▶ Automata as a way of representing languages.

▶ Decidability of language equivalence for automata.

▶ Translation of rational expressions to automata.

▶ Upshot: language equivalence of expressions is decidable.



Automata

An automaton is an abstract machine representing possible behaviors.

q0 q1 q2
a

a, b

b

b

a

Definition (Automata)

An automaton is a triple ⟨Q,→, I ,F ⟩ where
▶ Q is the set of states, and

▶ → ⊆ Q × Σ× Q is the transition relation, and

▶ with I ,F ⊆ Q are the initial and accepting states, respectively.

When ⟨q, a, q′⟩ ∈ →, we write q
a−→ q′.



Determinism

A deterministic automaton has no “ambiguity” in the transitions.

q0 q1 q2
a

a, b

b

b

a

Definition (Determinism)

An automaton ⟨Q,→, I ,F ⟩ is deterministic when for each q ∈ Q and a ∈ Σ there
exists precisely one (q)a ∈ Q such that q

a−→ (q)a.

The example automaton is deterministic.



Languages

The language of a state is the set of words leading to an accepting state.

q0 q1 q2
a

a, b

b

b

a

Definition (Automaton language)

The language of q ∈ Q, denoted LA(q), is the smallest set satisfying

q ∈ F

ϵ ∈ LA(q)

w ∈ LA(q
′) q

a−→ q′

aw ∈ LA(q)

The language of A, denoted L(A), is
⋃

q∈I LA(q).



Simulation and bisimulation

A simulation shows that one state can “mimic” another.

Definition (Simulation)

Let Ai = ⟨Qi ,→i , Ii ,Fi ⟩ for i ∈ {0, 1}. A simulation is a relation R ⊆ Q0 × Q1 where

q0 R q1 q0 ∈ F0

q1 ∈ F1

q0 R q1 q0
a−→ q′0

∃q′1. q1
a−→ q′1 ∧ q′0 R q′1

We call q0 ∈ Q0 similar to q1 ∈ Q1 when q0 R q1 for some simulation R, and q0 ∈ Q0

is bisimilar to q1 ∈ Q1 when q0 is similar to q1 and q1 is similar to q0.

q0 q1
b

a a, b



Bisimularity versus language equivalence

Lemma
Let Ai = ⟨Qi ,→, Ii ,Fi ⟩ for i ∈ {0, 1}, with qi ∈ Qi . The following hold:

1. If q0 is bisimilar to q1, then LA0(q0) = LA1(q1).

2. If LA0(q0) = LA1(q1) and the Ai are deterministic, then q0 is bisimilar to q1.

Proof of (1).

Let R be the simulation such that q0 R q1. Prove by induction on w ∈ Σ∗ that for all
qi ∈ Qi we have that if w ∈ LA0(q0), then w ∈ LA1(q1).

Base: if w = ϵ and w ∈ LA0(q0), then q0 ∈ F0, so q1 ∈ F1, hence w = ϵ ∈ LA1(q1).

Inductive step: if aw ∈ LA0(q0), then q0
a−→ q′0 and w ∈ LA0(q

′
0). There exists q′1 ∈ Q1

such that q1
a−→ q′1 and q′0 R q′1. By induction, w ∈ LA1(q

′
1), so aw ∈ LA1(q1).



Bisimularity versus language equivalence

Lemma
Let Ai = ⟨Qi ,→, Ii ,Fi ⟩ for i ∈ {0, 1}, with qi ∈ Qi . The following hold:

1. If q0 is bisimilar to q1, then LA0(q0) = LA1(q1).

2. If LA0(q0) = LA1(q1) and the Ai are deterministic, then q0 is bisimilar to q1.

Proof of (2).

Let R = {⟨q′0, q′1⟩ ∈ Q0 × Q1 : LA0(q
′
0) = LA1(q

′
1)}. We claim that R is a simulation.

First rule: Let q′0 R q′1 and q′0 ∈ F0. Then ϵ ∈ LA0(q
′
0) = LA1(q

′
1), so q′1 ∈ F1.

Second rule: Let q′0 R q′1 and q′0
a−→ q′′0 . Because A0 is deterministic, q′′0 = (q′0)a. We

should find q′′1 such that q′1
a−→ q′′1 and (q′0)a R q′′1 . We choose q′′1 = (q′1)a. A quick

proof shows that LA0((q
′
0)a) = LA1((q

′
1)a), and so (q′0)a R (q′1)a.

Analogously R ′ = {⟨q′1, q′0⟩ ∈ Q1 × Q0 : LA1(q
′
1) = LA0(q

′
0)} is a simulation.



Deciding bisimilarity

q1

q2

q3

aa

b

b

b

a p1

p2

p3

aa

b

b

b

a



Deciding bisimilarity

Data: det. automata ⟨Qi ,Fi , δi ⟩ with state qi ∈ Qi , for i ∈ {1, 2}.
Result: true if q1 is similar to q2, false otherwise.
R ← ∅; T ← {⟨q1, q2⟩};
while T ̸= ∅ do

pop ⟨q′1, q′2⟩ from T ;
if ⟨q′1, q′2⟩ ̸∈ R then

if q′1 ∈ F1 =⇒ q′2 ∈ F2 then

add ⟨q′1, q′2⟩ to R;
add ⟨(q′1)a, (q

′
2)a⟩ to T for all a ∈ Σ;

else

return false;

return true;



Enforcing determinism

Definition (Powerset automata)

Let A = ⟨Q,→, I ,F ⟩ be an automaton. The powerset automaton of A is the
deterministic automaton ⟨2Q ,→′, {I},F ′⟩, where
▶ F ′ = {S ⊆ Q : S ∩ F ̸= ∅}; and
▶ →′ is the smallest relation where for all S ⊆ Q, we have

S
a−→

′
{q′ ∈ Q : ∃q ∈ S . q

a−→ q′}



Enforcing determinism

p0 p1 p2
a

a, b

a, b

⇓

p0 p0, p1

p0, p2

p0, p1, p2 p1 p2

p1, p2

a
b

a

ba

b b

a, b

a, b

a, b

a,
b



Enforcing determinism

Lemma
Let A = ⟨Q,→, I ,F ⟩ be an automaton, and A′ = ⟨2Q ,→′, {I},F ′⟩ its powerset
automaton. For all S ⊆ Q we have LA′(S) =

⋃
q∈S LA(q). Thus, L(A) = L(A′).

Proof sketch.
Prove by induction on w ∈ Σ∗ that for all S ⊆ Q we have LA′(S) =

⋃
q∈S LA(q).

Base: ϵ ∈ LA′(S) ⇐⇒ S ∈ F ′ ⇐⇒ S ∩ F ̸= ∅ ⇐⇒ ϵ ∈
⋃

q∈S LA(q).

Inductive step: we derive as follows

aw ∈ LA′(S) ⇐⇒ w ∈ LA′({q′ ∈ Q : ∃q ∈ S .q
a−→ q′})

IH⇐⇒ ∃q′ ∈ Q, q ∈ S . q
a−→ q′ ∧ w ∈ LA(q

′)

⇐⇒ ∃q ∈ S . aw ∈ LA(q)



The story so far

Language equivalence of q0 and q1 in automata A0 and A1 is decidable:

1. Make both automata deterministic using the powerset construction.

2. Decide positively precisely when {q0} is bisimilar to {q1}.

But what about rational expressions?



Converting to automata

Theorem (Kleene ’56)

One can construct a finite automaton A with a state q such that L(q) = JeKE.

▶ Many different ways of proving this.

▶ Today’s approach is due to Antimirov (1996) and Brzozowski (1964).



Antimirov’s construction

▶ Basic idea: create an (infinite) automaton where states are expressions.

▶ Language of a state is intended to be the language of that expression.

▶ Some additional work necessary to tame this into an finite automaton.

a · b∗ 1 · b∗
a

b



Accepting expressions

If every state is an expression, which ones are accepting?

Definition (Accepting expressions)

We define A as the smallest subset of E satisfying the rules

1 ∈ A
e ∈ A f ∈ E
e + f , f + e ∈ A

e, f ∈ A
e · f ∈ A

e ∈ E
e∗ ∈ A

Idea: ϵ ∈ JeKE if and only if e ∈ A.



Transition structure

Definition (Transitions between expressions)

We define →E ⊆ E× Σ× E as the smallest relation satisfying

a
a−→E 1

e
a−→E e ′

e + f
a−→E e ′

f
a−→E f ′

e + f
a−→E f ′

e
a−→E e ′

e · f a−→E e ′ · f
e ∈ A f

a−→E f ′

e · f a−→E f ′
e

a−→E e ′

e∗
a−→E e ′ · e∗



Correctness

Theorem (Fundamental Theorem of Kleene Algebra)

Let e ∈ E. The following holds:

e ≡ [e ∈ A] +
∑
e

a−→e′

a · e ′

Here [e ∈ A] is shorthand for 1 when e ∈ A and 0 otherwise.

Corollary

Let A∞
e = ⟨E,→E, {e},A⟩ be the (infinite) Antimirov automaton.

For e ∈ E, it holds that JeKE = L(A∞
e ).



Finiteness

The Antimirov automaton is infinite! Let’s restrict it to a finite (relevant) set.

Definition
We define ρ : E→ 2E by induction, as follows.

ρ(0) = ρ(1) = ∅ ρ(a) = {1} ρ(e + f ) = ρ(e) ∪ ρ(f )

ρ(e · f ) = {e ′ · f : e ′ ∈ ρ(e)} ∪ ρ(f ) ρ(e∗) = {e ′ · e∗ : e ′ ∈ ρ(e)}

We write ρ̂(e) for ρ(e) ∪ {e}.

Lemma
If e ′ ∈ ρ̂(e) and e ′

a−→ e ′′, then e ′′ ∈ ρ̂(e).

Corollary

If Ae = ⟨ρ̂(e),→E ∩ ρ̂(e)2, {e},A ∩ ρ̂(e)⟩, then L(Ae) = L(A∞
e ).



The upshot

Language equivalence of rational expressions e and f is decidable.

1. Convert both expressions to their (finite) Antimirov automata.

2. Decide whether e (in Ae) is language equivalent to f (in Af ).



Other thoughts

▶ Converting an expression (program) to a machine is a kind of compilation.

▶ Automata in general are a great tool for decidability results.

▶ There exist methods to make bisimulation checking more efficient.

▶ Brzozowski’s approach has echoes in structural operational semantics.



Next lecture

▶ Converse construction: from automata to expressions.

▶ Matrices of rational expressions as a powerful tool.


