Kleene Algebra - Lecture 3

ESSLLI 2023

Last lectures

- Language semantics abstract from meaning of symbols.
- This model is equivalent to the relational semantics.
- Teased questions of decidability and completeness.

Today's lecture

- Automata as a way of representing languages.
- Decidability of language equivalence for automata.
- Translation of rational expressions to automata.
- Upshot: language equivalence of expressions is decidable.

Automata

An automaton is an abstract machine representing possible behaviors.

Definition (Automata)

An automaton is a triple $\langle Q, \rightarrow, I, F\rangle$ where

- Q is the set of states, and
- $\rightarrow \subseteq Q \times \Sigma \times Q$ is the transition relation, and
- with $I, F \subseteq Q$ are the initial and accepting states, respectively.

When $\left\langle q, \mathrm{a}, q^{\prime}\right\rangle \in \rightarrow$, we write $q \xrightarrow{\mathrm{a}} q^{\prime}$.

Determinism

A deterministic automaton has no "ambiguity" in the transitions.

Definition (Determinism)

An automaton $\langle Q, \rightarrow, I, F\rangle$ is deterministic when for each $q \in Q$ and a $\in \Sigma$ there exists precisely one $(q)_{\mathrm{a}} \in Q$ such that $q \xrightarrow{\mathrm{a}}(q)_{\mathrm{a}}$.

The example automaton is deterministic.

Languages

The language of a state is the set of words leading to an accepting state.

Definition (Automaton language)

The language of $q \in Q$, denoted $L_{A}(q)$, is the smallest set satisfying

$$
\frac{q \in F}{\epsilon \in L_{A}(q)} \quad \frac{w \in L_{A}\left(q^{\prime}\right) \quad q \xrightarrow{a} q^{\prime}}{a w \in L_{A}(q)}
$$

The language of A, denoted $L(A)$, is $\bigcup_{q \in I} L_{A}(q)$.

Simulation and bisimulation

A simulation shows that one state can "mimic" another.

Definition (Simulation)

Let $A_{i}=\left\langle Q_{i}, \rightarrow_{i}, I_{i}, F_{i}\right\rangle$ for $i \in\{0,1\}$. A simulation is a relation $R \subseteq Q_{0} \times Q_{1}$ where

$$
\frac{q_{0} R q_{1} \quad q_{0} \in F_{0}}{q_{1} \in F_{1}} \quad \frac{q_{0} R q_{1} \quad q_{0} \xrightarrow{\mathrm{a}} q_{0}^{\prime}}{\exists q_{1}^{\prime} \cdot q_{1} \xrightarrow{\mathrm{a}} q_{1}^{\prime} \wedge q_{0}^{\prime} R q_{1}^{\prime}}
$$

We call $q_{0} \in Q_{0}$ similar to $q_{1} \in Q_{1}$ when $q_{0} R q_{1}$ for some simulation R, and $q_{0} \in Q_{0}$ is bisimilar to $q_{1} \in Q_{1}$ when q_{0} is similar to q_{1} and q_{1} is similar to q_{0}.

Bisimularity versus language equivalence

Lemma

Let $A_{i}=\left\langle Q_{i}, \rightarrow, I_{i}, F_{i}\right\rangle$ for $i \in\{0,1\}$, with $q_{i} \in Q_{i}$. The following hold:

1. If q_{0} is bisimilar to q_{1}, then $L_{A_{0}}\left(q_{0}\right)=L_{A_{1}}\left(q_{1}\right)$.
2. If $L_{A_{0}}\left(q_{0}\right)=L_{A_{1}}\left(q_{1}\right)$ and the A_{i} are deterministic, then q_{0} is bisimilar to q_{1}.

Proof of (1).

Let R be the simulation such that $q_{0} R q_{1}$. Prove by induction on $w \in \Sigma^{*}$ that for all $q_{i} \in Q_{i}$ we have that if $w \in L_{A_{0}}\left(q_{0}\right)$, then $w \in L_{A_{1}}\left(q_{1}\right)$.
Base: if $w=\epsilon$ and $w \in L_{A_{0}}\left(q_{0}\right)$, then $q_{0} \in F_{0}$, so $q_{1} \in F_{1}$, hence $w=\epsilon \in L_{A_{1}}\left(q_{1}\right)$.
Inductive step: if a $w \in L_{A_{0}}\left(q_{0}\right)$, then $q_{0} \xrightarrow{\mathrm{a}} q_{0}^{\prime}$ and $w \in L_{A_{0}}\left(q_{0}^{\prime}\right)$. There exists $q_{1}^{\prime} \in Q_{1}$ such that $q_{1} \xrightarrow{\text { a }} q_{1}^{\prime}$ and $q_{0}^{\prime} R q_{1}^{\prime}$. By induction, $w \in L_{A_{1}}\left(q_{1}^{\prime}\right)$, so a $w \in L_{A_{1}}\left(q_{1}\right)$.

Bisimularity versus language equivalence

Lemma

Let $A_{i}=\left\langle Q_{i}, \rightarrow, I_{i}, F_{i}\right\rangle$ for $i \in\{0,1\}$, with $q_{i} \in Q_{i}$. The following hold:

1. If q_{0} is bisimilar to q_{1}, then $L_{A_{0}}\left(q_{0}\right)=L_{A_{1}}\left(q_{1}\right)$.
2. If $L_{A_{0}}\left(q_{0}\right)=L_{A_{1}}\left(q_{1}\right)$ and the A_{i} are deterministic, then q_{0} is bisimilar to q_{1}.

Proof of (2).

Let $R=\left\{\left\langle q_{0}^{\prime}, q_{1}^{\prime}\right\rangle \in Q_{0} \times Q_{1}: L_{A_{0}}\left(q_{0}^{\prime}\right)=L_{A_{1}}\left(q_{1}^{\prime}\right)\right\}$. We claim that R is a simulation.
First rule: Let $q_{0}^{\prime} R q_{1}^{\prime}$ and $q_{0}^{\prime} \in F_{0}$. Then $\epsilon \in L_{A_{0}}\left(q_{0}^{\prime}\right)=L_{A_{1}}\left(q_{1}^{\prime}\right)$, so $q_{1}^{\prime} \in F_{1}$.
Second rule: Let $q_{0}^{\prime} R q_{1}^{\prime}$ and $q_{0}^{\prime} \xrightarrow{\mathrm{a}} q_{0}^{\prime \prime}$. Because A_{0} is deterministic, $q_{0}^{\prime \prime}=\left(q_{0}^{\prime}\right)_{\mathrm{a}}$. We should find $q_{1}^{\prime \prime}$ such that $q_{1}^{\prime} \xrightarrow{\mathrm{a}} q_{1}^{\prime \prime}$ and $\left(q_{0}^{\prime}\right)_{\mathrm{a}} R q_{1}^{\prime \prime}$. We choose $q_{1}^{\prime \prime}=\left(q_{1}^{\prime}\right)_{\mathrm{a}}$. A quick proof shows that $L_{A_{0}}\left(\left(q_{0}^{\prime}\right)_{\mathrm{a}}\right)=L_{A_{1}}\left(\left(q_{1}^{\prime}\right)_{\mathrm{a}}\right)$, and so $\left(q_{0}^{\prime}\right)_{\mathrm{a}} R\left(q_{1}^{\prime}\right)_{\mathrm{a}}$.

Analogously $R^{\prime}=\left\{\left\langle q_{1}^{\prime}, q_{0}^{\prime}\right\rangle \in Q_{1} \times Q_{0}: L_{A_{1}}\left(q_{1}^{\prime}\right)=L_{A_{0}}\left(q_{0}^{\prime}\right)\right\}$ is a simulation.

Deciding bisimilarity

Deciding bisimilarity

Data: det. automata $\left\langle Q_{i}, F_{i}, \delta_{i}\right\rangle$ with state $q_{i} \in Q_{i}$, for $i \in\{1,2\}$. Result: true if q_{1} is similar to q_{2}, false otherwise.

```
R\leftarrow\emptyset;T\leftarrow{\langle\mp@subsup{q}{1}{},\mp@subsup{q}{2}{}\rangle};
while T\not=\emptyset do
    pop }\langle\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime}\rangle\mathrm{ from T;
    if }\langle\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime}\rangle\not\inR\mathrm{ then
    if }\mp@subsup{q}{1}{\prime}\in\mp@subsup{F}{1}{}\Longrightarrow\mp@subsup{q}{2}{\prime}\in\mp@subsup{F}{2}{}\mathrm{ then
            add }\langle\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime}\rangle\mathrm{ to }R\mathrm{ ;
            add }\langle(\mp@subsup{q}{1}{\prime}\mp@subsup{)}{\textrm{a}}{2},(\mp@subsup{q}{2}{\prime}\mp@subsup{)}{\textrm{a}}{}\rangle\mathrm{ to }T\mathrm{ for all a }\in\Sigma\mathrm{ ;
            else
            return false;
return true;
```


Enforcing determinism

Definition (Powerset automata)

Let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton. The powerset automaton of A is the deterministic automaton $\left\langle 2^{Q}, \rightarrow^{\prime},\{I\}, F^{\prime}\right\rangle$, where

- $F^{\prime}=\{S \subseteq Q: S \cap F \neq \emptyset\}$; and
- \rightarrow^{\prime} is the smallest relation where for all $S \subseteq Q$, we have

$$
S \xrightarrow{a^{\prime}}\left\{q^{\prime} \in Q: \exists q \in S . q \xrightarrow{a} q^{\prime}\right\}
$$

Enforcing determinism

Enforcing determinism

Lemma

Let $A=\langle Q, \rightarrow, I, F\rangle$ be an automaton, and $A^{\prime}=\left\langle 2^{Q}, \rightarrow^{\prime},\{I\}, F^{\prime}\right\rangle$ its powerset automaton. For all $S \subseteq Q$ we have $L_{A^{\prime}}(S)=\bigcup_{q \in S} L_{A}(q)$. Thus, $L(A)=L\left(A^{\prime}\right)$.

Proof sketch.
Prove by induction on $w \in \Sigma^{*}$ that for all $S \subseteq Q$ we have $L_{A^{\prime}}(S)=\bigcup_{q \in S} L_{A}(q)$.
Base: $\epsilon \in L_{A^{\prime}}(S) \Longleftrightarrow S \in F^{\prime} \Longleftrightarrow S \cap F \neq \emptyset \Longleftrightarrow \epsilon \in \bigcup_{q \in S} L_{A}(q)$.
Inductive step: we derive as follows

$$
\begin{aligned}
\mathrm{a} w \in L_{A^{\prime}}(S) & \Longleftrightarrow w \in L_{A^{\prime}}\left(\left\{q^{\prime} \in Q: \exists q \in S . q \xrightarrow{\mathrm{a}} q^{\prime}\right\}\right) \\
& \Longleftrightarrow \stackrel{I H}{\Longleftrightarrow} \exists q^{\prime} \in Q, q \in S . q \xrightarrow{\mathrm{a}} q^{\prime} \wedge w \in L_{A}\left(q^{\prime}\right) \\
& \Longleftrightarrow \exists q \in S . a w \in L_{A}(q)
\end{aligned}
$$

The story so far

Language equivalence of q_{0} and q_{1} in automata A_{0} and A_{1} is decidable:

1. Make both automata deterministic using the powerset construction.
2. Decide positively precisely when $\left\{q_{0}\right\}$ is bisimilar to $\left\{q_{1}\right\}$.

But what about rational expressions?

Converting to automata

Theorem (Kleene '56)
One can construct a finite automaton A with a state q such that $L(q)=\llbracket \llbracket \rrbracket_{\mathbb{E}}$.

- Many different ways of proving this.
- Today's approach is due to Antimirov (1996) and Brzozowski (1964).

Antimirov's construction

- Basic idea: create an (infinite) automaton where states are expressions.
- Language of a state is intended to be the language of that expression.
- Some additional work necessary to tame this into an finite automaton.

Accepting expressions

If every state is an expression, which ones are accepting?

Definition (Accepting expressions)

We define \mathbb{A} as the smallest subset of \mathbb{E} satisfying the rules

$$
\overline{1 \in \mathbb{A}} \quad \frac{e \in \mathbb{A} \quad f \in \mathbb{E}}{e+f, f+e \in \mathbb{A}} \quad \frac{e, f \in \mathbb{A}}{e \cdot f \in \mathbb{A}} \quad \frac{e \in \mathbb{E}}{e^{*} \in \mathbb{A}}
$$

Idea: $\epsilon \in \llbracket e \rrbracket_{\mathbb{E}}$ if and only if $e \in \mathbb{A}$.

Transition structure

Definition (Transitions between expressions)

We define $\rightarrow_{\mathbb{E}} \subseteq \mathbb{E} \times \Sigma \times \mathbb{E}$ as the smallest relation satisfying

$$
\begin{aligned}
& \overline{\mathrm{a} \xrightarrow{\mathrm{a}}_{\mathbb{E}} 1} \quad \frac{e \xrightarrow{\mathrm{a}}_{\mathbb{E}} e^{\prime}}{e+f \xrightarrow[\rightarrow]{\mathbb{E}} e^{\prime}} \quad \frac{f \xrightarrow{\mathrm{a}}_{\mathbb{E}} f^{\prime}}{e+f \xrightarrow[\rightarrow]{\mathbb{E}} f^{\prime}} \\
& \frac{e \xrightarrow[\rightarrow]{a}_{\mathbb{E}} e^{\prime}}{e \cdot f \xrightarrow[\rightarrow]{\rightarrow}_{\mathbb{E}} e^{\prime} \cdot f} \quad \frac{e \in \mathbb{A} \quad \stackrel{\mathrm{a}}{\mathbb{E}} f^{\prime}}{e \cdot f \xrightarrow{\mathrm{a}}_{\mathbb{E}} f^{\prime}} \quad \frac{e \xrightarrow{a}_{\mathbb{E}} e^{\prime}}{e^{*} \xrightarrow{a}_{\mathbb{E}} e^{\prime} \cdot e^{*}}
\end{aligned}
$$

Correctness

Theorem (Fundamental Theorem of Kleene Algebra)

Let $e \in \mathbb{E}$. The following holds:

$$
e \equiv[e \in \mathbb{A}]+\sum_{e^{\mathbf{a}} e^{\prime}} \mathrm{a} \cdot e^{\prime}
$$

Here $[e \in \mathbb{A}]$ is shorthand for 1 when $e \in \mathbb{A}$ and 0 otherwise.
Corollary
Let $A_{e}^{\infty}=\left\langle\mathbb{E}, \rightarrow_{\mathbb{E}},\{e\}, \mathbb{A}\right\rangle$ be the (infinite) Antimirov automaton.
For $e \in \mathbb{E}$, it holds that $\llbracket e \rrbracket_{\mathbb{E}}=L\left(A_{e}^{\infty}\right)$.

Finiteness

The Antimirov automaton is infinite! Let's restrict it to a finite (relevant) set.

Definition

We define $\rho: \mathbb{E} \rightarrow 2^{\mathbb{E}}$ by induction, as follows.

$$
\begin{array}{crr}
\rho(0)=\rho(1)=\emptyset & \rho(\mathrm{a})=\{1\} & \rho(e+f)=\rho(e) \cup \rho(f) \\
\rho(e \cdot f)=\left\{e^{\prime} \cdot f: e^{\prime} \in \rho(e)\right\} \cup \rho(f) & \rho\left(e^{*}\right)=\left\{e^{\prime} \cdot e^{*}: e^{\prime} \in \rho(e)\right\}
\end{array}
$$

We write $\hat{\rho}(e)$ for $\rho(e) \cup\{e\}$.
Lemma
If $e^{\prime} \in \hat{\rho}(e)$ and $e^{\prime} \xrightarrow{\text { a }} e^{\prime \prime}$, then $e^{\prime \prime} \in \hat{\rho}(e)$.
Corollary
If $A_{e}=\left\langle\hat{\rho}(e), \rightarrow_{\mathbb{E}} \cap \hat{\rho}(e)^{2},\{e\}, \mathbb{A} \cap \hat{\rho}(e)\right\rangle$, then $L\left(A_{e}\right)=L\left(A_{e}^{\infty}\right)$.

The upshot

Language equivalence of rational expressions e and f is decidable.

1. Convert both expressions to their (finite) Antimirov automata.
2. Decide whether e (in A_{e}) is language equivalent to f (in A_{f}).

Other thoughts

- Converting an expression (program) to a machine is a kind of compilation.
- Automata in general are a great tool for decidability results.
- There exist methods to make bisimulation checking more efficient.
- Brzozowski's approach has echoes in structural operational semantics.

Next lecture

- Converse construction: from automata to expressions.
- Matrices of rational expressions as a powerful tool.

