
Kleene Algebra — Lecture 2

ESSLLI 2023



Last lecture

▶ We discussed rational expressions and their semantics.

▶ We introduced a set of sound laws, and used those in proofs.

▶ We studied the relational and language models.



Today’s lecture

▶ Focus on “filter programs” — the ones that “do nothing or crash”.

▶ They admit their own equations, useful for reasoning about programs.

▶ Extend syntax and reasoning to obtain Kleene Algebra with Tests.



Filter programs

Suppose a, b ∈ Σ are “filtering” programs, i.e.:

σ(a) = {⟨s, s⟩ ∈ S × S : ϕ(s)} σ(b) = {⟨s, s⟩ ∈ S × S : ψ(s)}

In that case, you can show

Ja · bKσ = {⟨s, s⟩ ∈ S × S : ϕ(s) ∧ ψ(s)} = Jb · aKσ

Filtering programs admit more of these useful specialized equalities.



Extended syntax

We fix a set T = {t, s, . . . } of primitive tests.

Definition (Boolean expressions)

We write B for the set of Boolean expressions, generated by

B ∋ b, c ::= 0 | 1 | t ∈ T | b + c | b · c | b

Definition (Guarded rational expressions)

We write G for the set of guarded rational expressions, generated by

G ∋ e, f ::= b ∈ B | a ∈ Σ | e + f | e · f | e∗



Extended semantics — guarded interpretation

Definition (Guarded interpretation)

A (guarded) interpretation is a triple ⟨S , τ, σ⟩, where
▶ ⟨S , σ⟩ is an interpretation; and

▶ τ : T → 2S is a function.

Intuitively: τ(t) is the set of states where t holds.



Extended semantics — Boolean expressions

Definition (Boolean expression semantics)

Let ⟨S , τ, σ⟩ be a guarded interpretation. We define L−Mσ : B→ 2S inductively:

L0Mτ = ∅ L1Mτ = S LtMτ = τ(t)

Lb + cMτ = LbMτ ∪ LcMτ Lb · cMτ = LbMτ ∩ LcMτ LbMτ = S \ LbMτ



Extended semantics — guarded rational expressions

Definition (Guarded rational expression semantics)

Let ⟨S , τ, σ⟩ be a guarded interpretation. We define J−Kσ,τ : G→ 2S×S inductively:

JbKσ,τ = {⟨s, s⟩ : s ∈ LbMτ} JaKσ,τ = σ(a)

Je + f Kσ,τ = JeKσ,τ ∪ Jf Kσ,τ Je · f Kσ,τ = JeKσ,τ ◦ Jf Kσ,τ

Je∗Kσ,τ = JeK∗σ,τ



Integer square root, redux

Consider our integer square root finding program from the last lecture:

i ← 0;

while (i + 1)2 ≤ n do

i ← i + 1;

To encode this program, we had to encode both the loop guard and its negation:

σ(guard) = {⟨s, s⟩ : (s(i) + 1)2 ≤ s(n)}

σ(validate) = {⟨s, s⟩ : (s(i) + 1)2 > s(n)}



Integer square root, redux

New, shiny encoding:
init · (bound · incr)∗ · bound

Let T = {bound} and Σ = {init, incr}, and set

τ(bound) = {s ∈ S : (s(i) + 1)2 ≤ s(n)}

σ(init) = {⟨s, s[0/i ]⟩ : s ∈ S}

σ(incr) = {⟨s, s[s(i) + 1/i ]⟩ : s ∈ S}



Encoding flow control

We can encode traditional flow control:

if b then e else f := b · e + b · f

if b then e := b · e + b

while b do e := (b · e)∗ · b

This means our program can be written as

init ·while bound do incr



Boolean equivalence — laws

Definition (Boolean algebra)

≡B is the smallest congruence on B satisfying, for all b, c , d ∈ B:

b + 0 ≡B b b + c ≡B c + b b + b ≡B 1 b + (c + d) ≡B (b + c) + d

b · 1 ≡B b b · c ≡B c · b b · b ≡B 0 b · (c · d) ≡B (b · c) · d

b + c · d ≡B (b + c) · (b + d) b · (c + d) ≡B b · c + b · d



Boolean equivalence — soundness

Lemma (Soundness for Boolean algebra)

Let b, c ∈ B, and let τ : T → 2S . If b ≡B c, then LbMτ = LcMτ .



Boolean equivalence — reasoning

Lemma (Opposites)

If b, c ∈ B such that b + c ≡B 1 and b · c ≡B 0, then b ≡B c.



Boolean equivalence — reasoning

Lemma (DeMorgan’s first law)

If b, c ∈ B, then b + c ≡ b · c.



Guarded rational equivalence — laws

Definition (Kleene Algebra with Tests)

≡G sas the smallest congruence on G satisfying, for all b, c ∈ B and e, f , g ∈ G:

b ≡B c =⇒ b ≡G c e + 0 ≡G e e + e ≡G e e + f ≡G f + e

e + (f + g) ≡G (e + f ) + g e · (f · g) ≡G (e · f ) · g

e · (f + g) ≡G e · f + e · g (e + f ) · g ≡G e · g + f · g

e · 1 ≡G e ≡G 1 · e e · 0 ≡G 0 ≡G 0 · e 1 + e · e∗ ≡G e∗ ≡G 1 + e∗ · e

e + f · g ≦G g =⇒ f ∗ · e ≦G g e + f · g ≦G f =⇒ e · g∗ ≦G f



Guarded rational equivalence — soundness

Lemma (Soundness for Kleene Algebra with Tests)

Let e, f ∈ G, and let ⟨S , τ, σ⟩ be a guarded interpretation.

If e ≡G f , then JeKσ,τ = Jf Kσ,τ .



Guarded rational equivalence — reasoning

Lemma (Branch swapping)

Let e, f ∈ G as well as b ∈ B. The following holds:

if b then e else f ≡ if b then f else e

Proof.
This is a matter of unrolling the syntactic sugar and applying our rules:

if b then e else f = b · e + b · f (by definition)

≡ b · f + b · e (commutativity)

≡ b · f + b · e (see homework)

= if b then f else e (by definition)



Guarded rational equivalence — reasoning

Lemma (Loop unrolling)

Let e ∈ G and b ∈ B. The following holds:

while b do e ≡ if b then (e ·while b do e)

Proof.
We again unfold the syntactic sugar and apply our rules, as follows:

while b do e = (b · e)∗ · b (by definition)

≡ (b · e · (b · e)∗ + 1) · b (unrolling)

≡ b · e · (b · e)∗ · b + b (distributivity)

= if b then (e ·while b do e) (by definition)



Guarded rational equivalence — reasoning

You now have the tools to prove the equivalence claimed earlier:

while a and b do

e;
while a do

f;
while a and b do

e;

≡

while a do

if b then

e;
else

f;

This is part of today’s exercises.



Guarded language semantics

We can abstract from guarded interpretations using guarded languages.

Idea: record the order of actions, and the tests that hold in-between.

Definition (Guarded languages)

A guarded word is a word over (2T ∪ Σ)
∗
of the form

α1a1α2a2α3 · · ·αn−1an−1αn

A guarded language is a set of guarded words.

We write (Σ,T )∗ for the set of guarded languages.



Guarded language semantics

Definition (Guarded language composition)

Let L,K ⊆ (Σ,T )∗. We write L ⋄ K for the guarded product:

L ⋄ K = {wαx : α ∈ 2T ,wα ∈ L, αx ∈ K}

We write L(⋄) for the guarded star:

L(⋄) = 2T ∪ L ∪ L ⋄ L ∪ L ⋄ L ⋄ L ∪ · · ·



Guarded language semantics

Definition (Guarded language semantics)

We define L−MG : B→ 22
T
inductively, as follows:

L0MG = ∅ L1MG = 2T LtMG = {α ∈ 2T : t ∈ α}

Lb + cMG = LbMG ∪ LcMG Lb · cMG = LbMG ∩ LcMG LbMG = S \ LbMG

Next, we define J−KG : G→ (Σ,T )∗ inductively, as follows:

JbKG = LbMG JaKG = {a}

Je + f KG = JeKG ∪ Jf KG Je · f KG = JeKG ⋄ Jf KG Je∗KG = JeK(⋄)G



Model equivalence

Theorem (Equivalence of guarded models)

Let e, f ∈ G. The following are equivalent:

(i) JeKG = Jf KG
(ii) for all σ and τ , JeKσ,τ = Jf Kσ,τ .

Proof.
Like in the last lecture, but with more Greek letters!



From now on

▶ No more guarded expressions!

▶ Everything still works when you add tests.

▶ The proofs just become more involved.



Next lecture

▶ Representing languages using automata.

▶ Checking language equivalence of automata.

▶ Converting expressions to automata.


