Kleene Algebra — Lecture 2

ESSLLI 2023

- ▶ We discussed rational expressions and their semantics.
- ▶ We introduced a set of sound laws, and used those in proofs.
- ▶ We studied the *relational* and *language models*.

Today's lecture

- ▶ Focus on "filter programs" the ones that "do nothing or crash".
- > They admit their own equations, useful for reasoning about programs.
- Extend syntax and reasoning to obtain *Kleene Algebra with Tests*.

Filter programs

Suppose $a,b\in\Sigma$ are "filtering" programs, i.e.:

$$\sigma(\mathtt{a}) = \{ \langle s, s \rangle \in \mathsf{S} \times \mathsf{S} : \phi(s) \} \qquad \qquad \sigma(\mathtt{b}) = \{ \langle s, s \rangle \in \mathsf{S} \times \mathsf{S} : \psi(s) \}$$

In that case, you can show

$$\llbracket \mathtt{a} \cdot \mathtt{b} \rrbracket_{\sigma} = \{ \langle s, s \rangle \in \mathsf{S} \times \mathsf{S} : \phi(s) \wedge \psi(s) \} = \llbracket \mathtt{b} \cdot \mathtt{a} \rrbracket_{\sigma}$$

Filtering programs admit more of these useful specialized equalities.

Extended syntax

We fix a set $T = \{t, s, ...\}$ of *primitive tests*.

Definition (Boolean expressions)

We write $\ensuremath{\mathbb{B}}$ for the set of Boolean expressions, generated by

$$\mathbb{B}
i b, c ::= 0 \mid 1 \mid \mathtt{t} \in T \mid b + c \mid b \cdot c \mid \overline{b}$$

Definition (Guarded rational expressions)

We write $\mathbb G$ for the set of guarded rational expressions, generated by

$$\mathbb{G}
i e, f ::= b \in \mathbb{B} \mid a \in \Sigma \mid e + f \mid e \cdot f \mid e^*$$

Extended semantics — guarded interpretation

Definition (Guarded interpretation)

A (guarded) interpretation is a triple $\langle S, \tau, \sigma \rangle$, where

- $\langle S, \sigma \rangle$ is an interpretation; and
- ▶ τ : $T \rightarrow 2^S$ is a function.

Intuitively: $\tau(t)$ is the set of states where t holds.

Extended semantics — Boolean expressions

Definition (Boolean expression semantics)

Let $\langle S, \tau, \sigma \rangle$ be a guarded interpretation. We define $(-)_{\sigma} : \mathbb{B} \to 2^{S}$ inductively:

$$(0)_{ au} = \emptyset$$
 $(1)_{ au} = S$ $(t)_{ au} = au(t)$

$$\|b+c\|_{ au}=\|b\|_{ au}\cup\|c\|_{ au}\qquad (b\cdot c)_{ au}=\|b\|_{ au}\cap\|c\|_{ au}\qquad (\overline{b})_{ au}=S\setminus\|b\|_{ au}$$

Extended semantics — guarded rational expressions

Definition (Guarded rational expression semantics) Let $\langle S, \tau, \sigma \rangle$ be a guarded interpretation. We define $[-]_{\sigma,\tau} : \mathbb{G} \to 2^{S \times S}$ inductively:

$$\llbracket b \rrbracket_{\sigma,\tau} = \{ \langle s, s \rangle : s \in (b) \rbrace_{\tau} \} \qquad \llbracket a \rrbracket_{\sigma,\tau} = \sigma(a)$$
$$\llbracket e + f \rrbracket_{\sigma,\tau} = \llbracket e \rrbracket_{\sigma,\tau} \cup \llbracket f \rrbracket_{\sigma,\tau} \qquad \llbracket e \cdot f \rrbracket_{\sigma,\tau} = \llbracket e \rrbracket_{\sigma,\tau} \circ \llbracket f \rrbracket_{\sigma,\tau}$$

$$\llbracket e^*
rbracket_{\sigma, au} = \llbracket e
rbracket_{\sigma, au}^*$$

Integer square root, redux

Consider our integer square root finding program from the last lecture:

$$egin{array}{l} i \leftarrow 0; \ ext{while } (i+1)^2 \leq n ext{ do} \ & \mid i \leftarrow i+1; \end{array}$$

To encode this program, we had to encode both the loop guard and its negation:

$$\sigma(\texttt{guard}) = \{\langle s, s \rangle : (s(i) + 1)^2 \le s(n)\}$$

 $\sigma(\texttt{validate}) = \{\langle s, s \rangle : (s(i) + 1)^2 > s(n)\}$

Integer square root, redux

New, shiny encoding:

$$\texttt{init} \cdot (\texttt{bound} \cdot \texttt{incr})^* \cdot \overline{\texttt{bound}}$$

Let $T = \{\texttt{bound}\}\ \texttt{and}\ \Sigma = \{\texttt{init},\texttt{incr}\},\ \texttt{and}\ \texttt{set}$

$$au(ext{bound}) = \{s \in S : (s(i) + 1)^2 \le s(n)\}$$
 $\sigma(ext{init}) = \{\langle s, s[0/i]
angle : s \in S\}$
 $\sigma(ext{incr}) = \{\langle s, s[s(i) + 1/i]
angle : s \in S\}$

Encoding flow control

We can encode traditional flow control:

if b then e else
$$f := b \cdot e + \overline{b} \cdot f$$

if b then $e := b \cdot e + \overline{b}$
while b do $e := (b \cdot e)^* \cdot \overline{b}$

This means our program can be written as

 $\texttt{init} \cdot \textbf{while} \texttt{ bound } \textbf{do} \texttt{ incr}$

Boolean equivalence — laws

Definition (Boolean algebra)

 $\equiv_{\mathbb{B}}$ is the smallest congruence on \mathbb{B} satisfying, for all $b, c, d \in \mathbb{B}$:

$$b + 0 \equiv_{\mathbb{B}} b \qquad b + c \equiv_{\mathbb{B}} c + b \qquad b + \overline{b} \equiv_{\mathbb{B}} 1 \qquad b + (c + d) \equiv_{\mathbb{B}} (b + c) + d$$
$$b \cdot 1 \equiv_{\mathbb{B}} b \qquad b \cdot c \equiv_{\mathbb{B}} c \cdot b \qquad b \cdot \overline{b} \equiv_{\mathbb{B}} 0 \qquad b \cdot (c \cdot d) \equiv_{\mathbb{B}} (b \cdot c) \cdot d$$
$$b + c \cdot d \equiv_{\mathbb{B}} (b + c) \cdot (b + d) \qquad b \cdot (c + d) \equiv_{\mathbb{B}} b \cdot c + b \cdot d$$

Boolean equivalence — soundness

Lemma (Soundness for Boolean algebra) Let $b, c \in \mathbb{B}$, and let $\tau : T \to 2^S$. If $b \equiv_{\mathbb{B}} c$, then $(|b|)_{\tau} = (|c|)_{\tau}$. Boolean equivalence — reasoning

Lemma (Opposites) If $b, c \in \mathbb{B}$ such that $b + c \equiv_{\mathbb{B}} 1$ and $b \cdot c \equiv_{\mathbb{B}} 0$, then $b \equiv_{\mathbb{B}} \overline{c}$. Boolean equivalence — reasoning

Lemma (DeMorgan's first law) If $b, c \in \mathbb{B}$, then $\overline{b+c} \equiv \overline{b} \cdot \overline{c}$.

Guarded rational equivalence — laws

Definition (Kleene Algebra with Tests)

 $\equiv_{\mathbb{G}}$ sas the smallest congruence on \mathbb{G} satisfying, for all $b, c \in \mathbb{B}$ and $e, f, g \in \mathbb{G}$:

$$b \equiv_{\mathbb{B}} c \implies b \equiv_{\mathbb{G}} c \qquad e+0 \equiv_{\mathbb{G}} e \qquad e+e \equiv_{\mathbb{G}} e \qquad e+f \equiv_{\mathbb{G}} f+e$$

$$e+(f+g) \equiv_{\mathbb{G}} (e+f)+g \qquad e \cdot (f \cdot g) \equiv_{\mathbb{G}} (e \cdot f) \cdot g$$

$$e \cdot (f+g) \equiv_{\mathbb{G}} e \cdot f+e \cdot g \qquad (e+f) \cdot g \equiv_{\mathbb{G}} e \cdot g+f \cdot g$$

$$e \cdot 1 \equiv_{\mathbb{G}} e \equiv_{\mathbb{G}} 1 \cdot e \qquad e \cdot 0 \equiv_{\mathbb{G}} 0 \equiv_{\mathbb{G}} 0 \cdot e \qquad 1+e \cdot e^* \equiv_{\mathbb{G}} e^* \equiv_{\mathbb{G}} 1+e^* \cdot e$$

$$e+f \cdot g \leq_{\mathbb{G}} g \implies f^* \cdot e \leq_{\mathbb{G}} g \qquad e+f \cdot g \leq_{\mathbb{G}} f \implies e \cdot g^* \leq_{\mathbb{G}} f$$

Guarded rational equivalence — soundness

Lemma (Soundness for Kleene Algebra with Tests) Let $e, f \in \mathbb{G}$, and let $\langle S, \tau, \sigma \rangle$ be a guarded interpretation.

If $e \equiv_{\mathbb{G}} f$, then $\llbracket e \rrbracket_{\sigma,\tau} = \llbracket f \rrbracket_{\sigma,\tau}$.

Guarded rational equivalence — reasoning

Lemma (Branch swapping)

Let $e, f \in \mathbb{G}$ as well as $b \in \mathbb{B}$. The following holds:

```
if b then e else f \equiv if \overline{b} then f else e
```

Proof.

This is a matter of unrolling the syntactic sugar and applying our rules:

if b then e else
$$f = b \cdot e + \overline{b} \cdot f$$
(by definition) $\equiv \overline{b} \cdot f + b \cdot e$ (commutativity) $\equiv \overline{b} \cdot f + \overline{b} \cdot e$ (see homework) $=$ if \overline{b} then f else e(by definition) \Box

Guarded rational equivalence — reasoning

Lemma (Loop unrolling) Let $e \in \mathbb{G}$ and $b \in \mathbb{B}$. The following holds:

while *b* do
$$e \equiv$$
 if *b* then $(e \cdot while b do e)$

Proof.

We again unfold the syntactic sugar and apply our rules, as follows:

while b do
$$e = (b \cdot e)^* \cdot \overline{b}$$
(by definition) $\equiv (b \cdot e \cdot (b \cdot e)^* + 1) \cdot \overline{b}$ (unrolling) $\equiv b \cdot e \cdot (b \cdot e)^* \cdot \overline{b} + \overline{b}$ (distributivity) $=$ if b then $(e \cdot$ while b do e)(by definition) \Box

Guarded rational equivalence — reasoning

You now have the tools to prove the equivalence claimed earlier:

This is part of today's exercises.

Guarded language semantics

We can abstract from guarded interpretations using *guarded languages*. Idea: record the order of actions, *and the tests that hold in-between*.

Definition (Guarded languages)

A guarded word is a word over $(2^T \cup \Sigma)^*$ of the form

```
\alpha_1 a_1 \alpha_2 a_2 \alpha_3 \cdots \alpha_{n-1} a_{n-1} \alpha_n
```

A guarded language is a set of guarded words. We write $(\Sigma, T)^*$ for the set of guarded languages.

Definition (Guarded language composition) Let $L, K \subseteq (\Sigma, T)^*$. We write $L \diamond K$ for the guarded product:

$$L \diamond K = \{ w \alpha x : \alpha \in 2^T, w \alpha \in L, \alpha x \in K \}$$

We write $L^{(\diamond)}$ for the guarded star:

$$L^{(\diamond)} = 2^T \cup L \cup L \diamond L \cup L \diamond L \diamond L \diamond L \cup \cdots$$

Guarded language semantics

Definition (Guarded language semantics) We define $(-)_{\mathbb{G}} : \mathbb{B} \to 2^{2^{T}}$ inductively, as follows:

$$\begin{aligned} (0)_{\mathbb{G}} &= \emptyset & (1)_{\mathbb{G}} = 2^{T} & (t)_{\mathbb{G}} = \{\alpha \in 2^{T} : t \in \alpha\} \\ (b+c)_{\mathbb{G}} &= (b)_{\mathbb{G}} \cup (c)_{\mathbb{G}} & (b \cdot c)_{\mathbb{G}} = (b)_{\mathbb{G}} \cap (c)_{\mathbb{G}} & (\overline{b})_{\mathbb{G}} = S \setminus (b)_{\mathbb{G}} \end{aligned}$$

Next, we define $[\![-]\!]_{\mathbb{G}}:\mathbb{G}\to (\Sigma,\mathcal{T})^*$ inductively, as follows:

$$\llbracket b \rrbracket_{\mathbb{G}} = (b)_{\mathbb{G}}$$
 $\llbracket a \rrbracket_{\mathbb{G}} = \{a\}$

$$\llbracket e+f
rbracket_{\mathbb{G}} = \llbracket e
rbracket_{\mathbb{G}} \cup \llbracket f
rbracket_{\mathbb{G}} \qquad \llbracket e \cdot f
rbracket_{\mathbb{G}} = \llbracket e
rbracket_{\mathbb{G}} \diamond \llbracket f
rbracket_{\mathbb{G}} \qquad \llbracket e^*
rbracket_{\mathbb{G}} = \llbracket e
rbracket_{\mathbb{G}}^{(\diamond)}$$

Theorem (Equivalence of guarded models) Let $e, f \in \mathbb{G}$. The following are equivalent: (i) $\llbracket e \rrbracket_{\mathbb{G}} = \llbracket f \rrbracket_{\mathbb{G}}$ (ii) for all σ and τ , $\llbracket e \rrbracket_{\sigma,\tau} = \llbracket f \rrbracket_{\sigma,\tau}$.

Proof.

Like in the last lecture, but with more Greek letters!

From now on

- No more guarded expressions!
- Everything still works when you add tests.
- ▶ The proofs just become more involved.

Next lecture

- Representing languages using *automata*.
- Checking language equivalence of automata.
- Converting expressions to automata.