Kleene Algebra — Lecture 2

ESSLLI 2023



Last lecture

> We discussed rational expressions and their semantics.
> We introduced a set of sound laws, and used those in proofs.

> We studied the relational and language models.



Today's lecture

» Focus on “filter programs”’ — the ones that “do nothing or crash”.
» They admit their own equations, useful for reasoning about programs.

P> Extend syntax and reasoning to obtain Kleene Algebra with Tests.



Filter programs

Suppose a,b € ¥ are “filtering” programs, i.e.:

o(a) = {(s,s) € S x S : ¢(s)} o(b) = {(s,s) € S x S : ¥(s)}

In that case, you can show

[a-b]le ={(s,s) € SxS:o(s)ANY(s)} =[b-a],

Filtering programs admit more of these useful specialized equalities.



Extended syntax

We fix a set T ={t,s,...} of primitive tests.

Definition (Boolean expressions)

We write B for the set of Boolean expressions, generated by
B>bc:=0|1|teT|b+c|b-cl|b

Definition (Guarded rational expressions)

We write G for the set of guarded rational expressions, generated by

Goefu=beB|lacX|et+f|e-f]|e"



Extended semantics — guarded interpretation

Definition (Guarded interpretation)
A (guarded) interpretation is a triple (S, 7, o), where
» (S,0) is an interpretation; and

» 7. T — 25 is a function.

Intuitively: 7(t) is the set of states where t holds.



Extended semantics — Boolean expressions

Definition (Boolean expression semantics)
Let (S, 7,0) be a guarded interpretation. We define (—), : B — 2° inductively:

(0)- =0 1) =5 (thr = 7(¢)

(b+ c)r = (b)r U (c)r (b-c)r = (b)rN{c)- (]EDT =S\ (b)-



Extended semantics — guarded rational expressions

Definition (Guarded rational expression semantics)
Let (S, 7,0) be a guarded interpretation. We define [~],.» : G — 2°*° inductively:

[blor = {(s,s) : s € (b)-} [a]or = o(2)
le + flor = [€lor U flosr [e - flor = [elor o [flor

["]o,r = [elo.r



Integer square root, redux

Consider our integer square root finding program from the last lecture:
i+ 0;
while (i +1)? < n do
| it
To encode this program, we had to encode both the loop guard and its negation:

o(guard) = {(s.s) : (s(i) + 1)* < s(n)}

o(validate) = {(s,s) : (s(i) + 1)® > s(n)}



Integer square root, redux

New, shiny encoding:
init - (bound - incr)” - bound

Let T = {bound} and ¥ = {init, incr}, and set
T(bound) = {s € 5 : (s(i) +1)* < s(n)}
o(init) = {(s,s[0//]) : s € S}

o(incr) = {(s,s[s(i) + 1/i]) : s € S}



Encoding flow control

We can encode traditional flow control:

if btheneelse f:=b-e+b-f
if bthene:=b-e+b
while bdo e:= (b-e)"-b

This means our program can be written as

init - while bound do incr



Boolean equivalence — laws

Definition (Boolean algebra)

=p is the smallest congruence on B satisfying, for all b, c,d € B:
b+0=gb b+c=gc+b b+b=p1 b+ (c+d)=p(b+c)+d
b‘lEBb b'CEBC~b b-bEBO b-(C-d)E]B(b‘C)'d

b+c-d=g(b+c)-(b+d) b-(c+d)=gb-c+b-d



Boolean equivalence — soundness

Lemma (Soundness for Boolean algebra)
Let byc €B, and let 7: T —2°. If b=g c, then (b), = (c)..



Boolean equivalence — reasoning

Lemma (Opposites)
If b,c € B such that b+ c=g 1 and b-c =g 0, then b =g C.



Boolean equivalence — reasoning

Lemma (DeMorgan’s first law)
Ifb,ccB, thenb+c=b-TC.



Guarded rational equivalence — laws

Definition (Kleene Algebra with Tests)
=g sas the smallest congruence on G satisfying, for all b,c € B and e,f, g € G:

b=pc — b=¢gc e+0=ge et+e=ge e+f=gf+e
et(f+g)=c(et+f)+g e-(f-g)=c(e-f)-g
e (ftg)=ce-f+e-g (e+f) g=ce-g+f-g
e-l=ge=gl-e e-0=g0=g0-e l+e-e"=ge"=gl+e-e

e+f - glcg = F-egg e+f-g<gf = e-g"<gf



Guarded rational equivalence — soundness

Lemma (Soundness for Kleene Algebra with Tests)
Let e, f € G, and let (S, 7,0) be a guarded interpretation.

If e =g f, then [[e]]g;r = [[f]]U,T'



Guarded rational equivalence — reasoning

Lemma (Branch swapping)
Let e,f € G as well as b € B. The following holds:

if b then e else f = if b then f else e

Proof.
This is a matter of unrolling the syntactic sugar and applying our rules:
if btheneelse f =b-e+b-f (by definition)
=b-f+b-e (commutativity)
=b-f+b-e (see homework)

=if b then f else e (by definition) [



Guarded rational equivalence — reasoning

Lemma (Loop unrolling)
Let e € G and b € B. The following holds:

while b do e = if b then (e - while b do ¢)

Proof.

We again unfold the syntactic sugar and apply our rules, as follows:

while bdo e = (b-e)*-b
=(b-e-(b-e)"+1)-b
=b-e-(b-e)-b+b
= if b then (e - while b do e)

(by definition)
(unrolling)
(distributivity)
(by definition) ]



Guarded rational equivalence — reasoning

You now have the tools to prove the equivalence claimed earlier:

while a and b do

‘ .. while a do
while a do _ it b 'then
: - s
while a and b do els;

e

This is part of today’s exercises.



Guarded language semantics

We can abstract from guarded interpretations using guarded languages.

Idea: record the order of actions, and the tests that hold in-between.
Definition (Guarded languages)
A guarded word is a word over (27 UX)" of the form

(121128203 * * * Qp—18p—10lp

A guarded language is a set of guarded words.

We write (X, T)* for the set of guarded languages.



Guarded language semantics

Definition (Guarded language composition)
Let L, K C (X, T)". We write L o K for the guarded product:

LoK={wax:aec2 wael axec K}
We write L(®) for the guarded star.

L) — 2T UL ULoLULoOLOLU---



Guarded language semantics

Definition (Guarded language semantics)
We define (—)g : B — 22" inductively, as follows:

(O =0 (g =27 (the = {e€2" :tea}
(b+chg = (b)c U (c)e (b-c)g = (bl N (c)e (bl = S\ (b)e
Next, we define [-] : G — (Z, T)* inductively, as follows:
[b]c = (b)e [a]c = {a}

[e + e = [e]¢ U [fle e - fle = [e] © [fle [e]c = [e]%)



Model equivalence

Theorem (Equivalence of guarded models)

Let e,f € G. The following are equivalent:
(i) [ele = [fle

(ii) for all o and 7, [€]or = [flor-

Proof.

Like in the last lecture, but with more Greek letters!



From now on

» No more guarded expressions!
» Everything still works when you add tests.

» The proofs just become more involved.



Next lecture

P> Representing languages using automata.
» Checking language equivalence of automata.

» Converting expressions to automata.



