Kleene Algebra - Lecture 2

ESSLLI 2023

Last lecture

- We discussed rational expressions and their semantics.
- We introduced a set of sound laws, and used those in proofs.
- We studied the relational and language models.

Today's lecture

- Focus on "filter programs" - the ones that "do nothing or crash".
- They admit their own equations, useful for reasoning about programs.
- Extend syntax and reasoning to obtain Kleene Algebra with Tests.

Filter programs

Suppose $\mathrm{a}, \mathrm{b} \in \Sigma$ are "filtering" programs, i.e.:

$$
\sigma(\mathrm{a})=\{\langle s, s\rangle \in S \times S: \phi(s)\} \quad \sigma(\mathrm{b})=\{\langle s, s\rangle \in S \times S: \psi(s)\}
$$

In that case, you can show

$$
\llbracket \mathrm{a} \cdot \mathrm{~b} \rrbracket_{\sigma}=\{\langle s, s\rangle \in S \times S: \phi(s) \wedge \psi(s)\}=\llbracket \mathrm{b} \cdot \mathrm{a} \rrbracket_{\sigma}
$$

Filtering programs admit more of these useful specialized equalities.

Extended syntax

We fix a set $T=\{\mathrm{t}, \mathrm{s}, \ldots\}$ of primitive tests.

Definition (Boolean expressions)

We write \mathbb{B} for the set of Boolean expressions, generated by

$$
\mathbb{B} \ni b, c::=0|1| t \in T|b+c| b \cdot c \mid \bar{b}
$$

Definition (Guarded rational expressions)

We write \mathbb{G} for the set of guarded rational expressions, generated by

$$
\mathbb{G} \ni e, f::=b \in \mathbb{B}|\mathrm{a} \in \Sigma| e+f|e \cdot f| e^{*}
$$

Extended semantics - guarded interpretation

Definition (Guarded interpretation)
A (guarded) interpretation is a triple $\langle S, \tau, \sigma\rangle$, where

- $\langle S, \sigma\rangle$ is an interpretation; and
- $\tau: T \rightarrow 2^{S}$ is a function.

Intuitively: $\tau(\mathrm{t})$ is the set of states where t holds.

Extended semantics - Boolean expressions

Definition (Boolean expression semantics)

Let $\langle S, \tau, \sigma\rangle$ be a guarded interpretation. We define $(-)_{\sigma}: \mathbb{B} \rightarrow 2^{S}$ inductively:

$$
\left.\begin{array}{rlrl}
(0)_{\tau} & =\emptyset & (1)_{\tau} & =S \\
(b+c)_{\tau} & =(b)_{\tau} \cup(c)_{\tau} & (b \cdot c)_{\tau} & =(b b)_{\tau} \cap(c)_{\tau}
\end{array} r(\bar{b})_{\tau}=S \backslash(b)_{\tau}\right)
$$

Extended semantics - guarded rational expressions

Definition (Guarded rational expression semantics)
Let $\langle S, \tau, \sigma\rangle$ be a guarded interpretation. We define $\llbracket-\rrbracket_{\sigma, \tau}: \mathbb{G} \rightarrow 2^{S \times S}$ inductively:

$$
\begin{aligned}
\llbracket b \rrbracket_{\sigma, \tau} & =\left\{\langle s, s\rangle: s \in(b)_{\tau}\right\} & \llbracket \mathrm{a} \rrbracket_{\sigma, \tau}=\sigma(\mathrm{a}) \\
\llbracket e+f \rrbracket_{\sigma, \tau} & =\llbracket e \rrbracket_{\sigma, \tau} \cup \llbracket f \rrbracket_{\sigma, \tau} & \llbracket e \cdot f \rrbracket_{\sigma, \tau}=\llbracket e \rrbracket_{\sigma, \tau} \circ \llbracket f \rrbracket_{\sigma, \tau} \\
\llbracket e^{*} \rrbracket_{\sigma, \tau} & =\llbracket e \rrbracket_{\sigma, \tau}^{*} &
\end{aligned}
$$

Integer square root, redux

Consider our integer square root finding program from the last lecture:

$$
\begin{aligned}
& i \leftarrow 0 ; \\
& \text { while }(i+1)^{2} \leq n \text { do } \\
& \quad \mid \quad i \leftarrow i+1 ;
\end{aligned}
$$

To encode this program, we had to encode both the loop guard and its negation:

$$
\begin{aligned}
\sigma(\text { guard }) & =\left\{\langle s, s\rangle:(s(i)+1)^{2} \leq s(n)\right\} \\
\sigma(\text { validate }) & =\left\{\langle s, s\rangle:(s(i)+1)^{2}>s(n)\right\}
\end{aligned}
$$

Integer square root, redux

New, shiny encoding:

$$
\text { init } \cdot(\text { bound } \cdot \text { incr })^{*} \cdot \overline{\text { bound }}
$$

Let $T=\{$ bound $\}$ and $\Sigma=\{$ init, incr $\}$, and set

$$
\begin{aligned}
\tau(\text { bound }) & =\left\{s \in S:(s(i)+1)^{2} \leq s(n)\right\} \\
\sigma(\text { init }) & =\{\langle s, s[0 / i]\rangle: s \in S\} \\
\sigma(\text { incr }) & =\{\langle s, s[s(i)+1 / i]\rangle: s \in S\}
\end{aligned}
$$

Encoding flow control

We can encode traditional flow control:

$$
\text { if } \begin{aligned}
b \text { then } e \text { else } f & :=b \cdot e+\bar{b} \cdot f \\
\text { if } b \text { then } e & :=b \cdot e+\bar{b} \\
\text { while } b \text { do } e & :=(b \cdot e)^{*} \cdot \bar{b}
\end{aligned}
$$

This means our program can be written as
init • while bound do incr

Boolean equivalence - laws

Definition (Boolean algebra)
$\equiv_{\mathbb{B}}$ is the smallest congruence on \mathbb{B} satisfying, for all $b, c, d \in \mathbb{B}$:

$$
\begin{array}{cccc}
b+0 \equiv_{\mathbb{B}} b & b+c \equiv_{\mathbb{B}} c+b & b+\bar{b} \equiv_{\mathbb{B}} 1 & b+(c+d) \equiv_{\mathbb{B}}(b+c)+d \\
b \cdot 1 \equiv_{\mathbb{B}} b & b \cdot c \equiv_{\mathbb{B}} c \cdot b & b \cdot \bar{b} \equiv_{\mathbb{B}} 0 & b \cdot(c \cdot d) \equiv_{\mathbb{B}}(b \cdot c) \cdot d \\
b+c \cdot d \equiv_{\mathbb{B}}(b+c) \cdot(b+d) & b \cdot(c+d) \equiv_{\mathbb{B}} b \cdot c+b \cdot d
\end{array}
$$

Boolean equivalence - soundness

Lemma (Soundness for Boolean algebra)
Let $b, c \in \mathbb{B}$, and let $\tau: T \rightarrow 2^{S}$. If $b \equiv_{\mathbb{B}} c$, then $(b)_{\tau}=(c)_{\tau}$.

Boolean equivalence - reasoning

Lemma (Opposites)
If $b, c \in \mathbb{B}$ such that $b+c \equiv_{\mathbb{B}} 1$ and $b \cdot c \equiv_{\mathbb{B}} 0$, then $b \equiv_{\mathbb{B}} \bar{c}$.

Boolean equivalence - reasoning

Lemma (DeMorgan's first law)
If $b, c \in \mathbb{B}$, then $\overline{b+c} \equiv \bar{b} \cdot \bar{c}$.

Guarded rational equivalence - laws

Definition (Kleene Algebra with Tests)

$\equiv_{\mathbb{G}}$ sas the smallest congruence on \mathbb{G} satisfying, for all $b, c \in \mathbb{B}$ and $e, f, g \in \mathbb{G}$:

$$
\begin{array}{ccc}
b \equiv_{\mathbb{B}} c \Longrightarrow b \equiv_{\mathbb{G}} c & e+0 \equiv_{\mathbb{G}} e & e+e \equiv_{\mathbb{G}} e \\
e+(f+g) \equiv_{\mathbb{G}}(e+f)+g & e \cdot(f \cdot g) \equiv_{\mathbb{G}}(e \cdot f) \cdot g \\
e \cdot(f+g) \equiv_{\mathbb{G}} e \cdot f+e \cdot g & (e+f) \cdot g \equiv_{\mathbb{G}} e \cdot g+f \cdot g \\
e \cdot 1 \equiv_{\mathbb{G}} e \equiv_{\mathbb{G}} 1 \cdot e & e \cdot 0 \equiv_{\mathbb{G}} 0 \equiv_{\mathbb{G}} 0 \cdot e & 1+e \cdot e^{*} \equiv_{\mathbb{G}} e^{*} \equiv_{\mathbb{G}} 1+e^{*} \cdot e \\
e+f \cdot g \leqq_{\mathbb{G}} g \Longrightarrow f^{*} \cdot e \leqq_{\mathbb{G}} g & e+f \cdot g \leqq_{\mathbb{G}} f \Longrightarrow e \cdot g^{*} \leqq_{\mathbb{G}} f
\end{array}
$$

Guarded rational equivalence - soundness

Lemma (Soundness for Kleene Algebra with Tests)
Let e, $f \in \mathbb{G}$, and let $\langle S, \tau, \sigma\rangle$ be a guarded interpretation.

$$
\text { If } e \equiv_{\mathbb{G}} f \text {, then } \llbracket e \rrbracket_{\sigma, \tau}=\llbracket f \rrbracket_{\sigma, \tau} \text {. }
$$

Guarded rational equivalence - reasoning

Lemma (Branch swapping)
Let $e, f \in \mathbb{G}$ as well as $b \in \mathbb{B}$. The following holds:

$$
\text { if } b \text { then } e \text { else } f \equiv \text { if } \bar{b} \text { then } f \text { else } e
$$

Proof.
This is a matter of unrolling the syntactic sugar and applying our rules:

$$
\text { if } \begin{aligned}
b \text { then } e \text { else } f & =b \cdot e+\bar{b} \cdot f \\
& \equiv \bar{b} \cdot f+b \cdot e \\
& \equiv \bar{b} \cdot f+\overline{\bar{b}} \cdot e \\
& =\text { if } \bar{b} \text { then } f \text { else } e
\end{aligned}
$$

(by definition)
(commutativity)
(see homework)
(by definition)

Guarded rational equivalence - reasoning

Lemma (Loop unrolling)
Let $e \in \mathbb{G}$ and $b \in \mathbb{B}$. The following holds:

$$
\text { while } b \text { do } e \equiv \text { if } b \text { then (} e \cdot \text { while } b \text { do } e \text {) }
$$

Proof.
We again unfold the syntactic sugar and apply our rules, as follows:

$$
\begin{array}{rlr}
\text { while } b \text { do } e & =(b \cdot e)^{*} \cdot \bar{b} & \text { (by definition) } \\
& \equiv\left(b \cdot e \cdot(b \cdot e)^{*}+1\right) \cdot \bar{b} & \text { (unrolling) } \\
& \equiv b \cdot e \cdot(b \cdot e)^{*} \cdot \bar{b}+\bar{b} & \text { (distributivity) } \\
& =\text { if } b \text { then }(e \cdot \text { while } b \text { do } e \text {) } & \text { (by definition) }
\end{array}
$$

Guarded rational equivalence - reasoning

You now have the tools to prove the equivalence claimed earlier:

```
while a and b do
    e;
while a do
    f;
    while a and b do
        e;
```


This is part of today's exercises.

Guarded language semantics

We can abstract from guarded interpretations using guarded languages. Idea: record the order of actions, and the tests that hold in-between.

Definition (Guarded languages)

A guarded word is a word over $\left(2^{T} \cup \Sigma\right)^{*}$ of the form

$$
\alpha_{1} \mathrm{a}_{1} \alpha_{2} \mathrm{a}_{2} \alpha_{3} \cdots \alpha_{n-1} \mathrm{a}_{n-1} \alpha_{n}
$$

A guarded language is a set of guarded words.
We write $(\Sigma, T)^{*}$ for the set of guarded languages.

Guarded language semantics

Definition (Guarded language composition)
Let $L, K \subseteq(\Sigma, T)^{*}$. We write $L \diamond K$ for the guarded product:

$$
L \diamond K=\left\{w \alpha x: \alpha \in 2^{T}, w \alpha \in L, \alpha x \in K\right\}
$$

We write $L^{(\diamond)}$ for the guarded star:

$$
L^{(\diamond)}=2^{T} \cup L \cup L \diamond L \cup L \diamond L \diamond L \cup \cdots
$$

Guarded language semantics

Definition (Guarded language semantics)

We define $(-)_{\mathbb{G}}: \mathbb{B} \rightarrow 2^{2^{T}}$ inductively, as follows:

$$
\begin{array}{ccc}
(00)_{G}=\emptyset \quad(1)_{G}=2^{T} \quad(t)_{G}=\left\{\alpha \in 2^{T}: t \in \alpha\right\} \\
(b+c)_{G}=(b)_{G} \cup(c)_{G} \quad(b \cdot c)_{G}=(b)_{G} \cap(c)_{G} \quad(\bar{b})_{G}=S \backslash(b)_{G}
\end{array}
$$

Next, we define $\llbracket-\rrbracket_{\mathbb{G}}: \mathbb{G} \rightarrow(\Sigma, T)^{*}$ inductively, as follows:

$$
\llbracket b \rrbracket_{\mathbb{G}}=(b\rangle_{\mathbb{G}} \quad \llbracket a \rrbracket_{\mathbb{G}}=\{\mathrm{a}\}
$$

$$
\llbracket e+f \rrbracket_{\mathbb{G}}=\llbracket e \rrbracket_{\mathbb{G}} \cup \llbracket f \rrbracket_{\mathbb{G}} \quad \llbracket e \cdot f \rrbracket_{\mathbb{G}}=\llbracket e \rrbracket_{\mathbb{G}} \diamond \llbracket f \rrbracket_{\mathbb{G}} \quad \llbracket e^{*} \rrbracket_{\mathbb{G}}=\llbracket e \rrbracket_{\mathbb{G}}^{(\diamond)}
$$

Model equivalence

Theorem (Equivalence of guarded models)
Let e, $f \in \mathbb{G}$. The following are equivalent:
(i) $\llbracket e \rrbracket_{\mathbb{G}}=\llbracket f \rrbracket_{\mathbb{G}}$
(ii) for all σ and $\tau, \llbracket e \rrbracket_{\sigma, \tau}=\llbracket f \rrbracket_{\sigma, \tau}$.

Proof.

Like in the last lecture, but with more Greek letters!

From now on

- No more guarded expressions!
- Everything still works when you add tests.
- The proofs just become more involved.

Next lecture

- Representing languages using automata.
- Checking language equivalence of automata.
- Converting expressions to automata.

