# Kleene Algebra - Lecture 1 

ESSLLI 2023

## Housekeeping

- Best way to reach me is by email.
- Website: https://kap.pe/esslli.
- 5 lectures, two 40 -minute parts, 10 -ish minute break.
- Extensive lecture notes, including exercises.
- It is always OK to ask me for clarification.
- It is always OK to discuss the exercises with other people.


## Motivation

while a and b do

```
        e;
```

while a do
f;
while a and b do
e;

```
while a do
    if b then
        e;
    else
        f;
```

These programs are the same... but how do you prove that?

## Overview

- We can reason equationally, using properties of programs.
- We can reason operationally, by comparing abstract machines.
- These are two sides of the same coin.


## Equational reasoning

- Speaks to our intuition - you have all done this before.
- Helps to relate programs to specifications.
- Allows us to prove validity of refactoring operations.
- Solve equations to find program satisfying a specification.


## Operational reasoning

- Corresponds much more closely to what computers do.
- Long tradition of powerful automated reasoning.
- Will cover this in more detail from lecture 3 onwards.


## Syntax

Primitive actions $\Sigma=\{a, b, c, \ldots\}$.
Compound expressions:

$$
\mathbb{E} \ni e, f::=0|1| \mathrm{a} \in \Sigma|e+f| e \cdot f \mid e^{*}
$$

Think of $e \in \mathbb{E}$ as a pattern of behavior for a program.

## Example: Integer Square Root

In a traditional language:

$$
\begin{aligned}
& i \leftarrow 0 \\
& \text { while }(i+1)^{2} \leq n \text { do } \\
& \quad \mid \quad i \leftarrow i+1
\end{aligned}
$$

In our language (for now):

$$
\text { init } \cdot(\text { guard } \cdot \text { incr })^{*} \cdot \text { validate }
$$

## Semantics

## Definition (Interpretation)

An interpretation is a pair $\langle S, \sigma\rangle$ where $S$ is a set, and $\sigma: \Sigma \rightarrow 2^{S \times S}$.

## Definition (Relational semantics)

Let $\sigma$ be an interpretation. $\llbracket e \rrbracket_{\sigma}$ is a relation on $S$, defined inductively by

$$
\left.\begin{array}{rlrl}
\llbracket 0 \rrbracket_{\sigma} & =\emptyset & \llbracket 1 \rrbracket_{\sigma} & =\mathrm{id} d_{S} \\
\llbracket e+f \rrbracket_{\sigma} & =\llbracket e \rrbracket_{\sigma} \cup \llbracket f \rrbracket_{\sigma} & \llbracket e \cdot f \rrbracket_{\sigma} & =\llbracket e \rrbracket_{\sigma} \circ \llbracket f \rrbracket_{\sigma}
\end{array}\right) \llbracket \rrbracket^{*} \rrbracket_{\sigma}=\llbracket e \rrbracket_{\sigma}^{*}
$$

## Example: Integer Square Root

$$
\begin{aligned}
& \text { init } \cdot(\text { guard } \cdot \text { incr })^{*} \cdot \text { validate } \\
& S=\{f:\{i, n\} \rightarrow \mathbb{N}\} \\
& \sigma(\text { init })=\{\langle s, s[0 / i]\rangle: s \in S\} \\
& \sigma(\text { guard })=\left\{\langle s, s\rangle:(s(i)+1)^{2} \leq s(n)\right\} \\
& \sigma(\text { incr })=\{\langle s, s[s(i)+1 / i]\rangle: s \in S\} \\
& \sigma(\text { validate })=\left\{\langle s, s\rangle:(s(i)+1)^{2}>s(n)\right\}
\end{aligned}
$$

## Reasoning

Which things are true regardless of $\sigma$ ?
For instance, + is commutative:

$$
\llbracket e+f \rrbracket_{\sigma}=\llbracket e \rrbracket_{\sigma} \cup \llbracket f \rrbracket_{\sigma}=\llbracket f \rrbracket_{\sigma} \cup \llbracket e \rrbracket_{\sigma}=\llbracket f+e \rrbracket_{\sigma}
$$

Can you think of any other laws?

## Axioms

## Definition (Kleene Algebra)

We define $\equiv$ as the smallest congruence on $\mathbb{E}$ satisfying the following:

$$
\begin{aligned}
& e+0 \equiv e \\
& e+e \equiv e \\
& e+f \equiv f+e \\
& e+(f+g) \equiv(e+f)+g \\
& e \cdot(f \cdot g) \equiv(e \cdot f) \cdot g \\
& e \cdot(f+g) \equiv e \cdot f+e \cdot g \\
& (e+f) \cdot g \equiv e \cdot g+f \cdot g \\
& e \cdot 1 \equiv e \equiv 1 \cdot e \\
& e \cdot 0 \equiv 0 \equiv 0 \cdot e \\
& 1+e \cdot e^{*} \equiv e^{*} \equiv 1+e^{*} \cdot e \\
& e+f \cdot g \leqq g \Longrightarrow f^{*} \cdot e \leqq g \\
& e+f \cdot g \leqq f \Longrightarrow e \cdot g^{*} \leqq f
\end{aligned}
$$

Here $e \leqq f$ is shorthand for $e+f \leqq f$.

## Axioms

Lemma (Soundness)
If $e \equiv f$, then $\llbracket e \rrbracket_{\sigma}=\llbracket f \rrbracket_{\sigma}$ for all interpretations $\sigma$.
Proof sketch.
By induction on the construction of $\equiv$; for instance, if $e=g_{1} \cdot\left(g_{2} \cdot g_{3}\right)$ and $f=\left(g_{1} \cdot g_{2}\right) \cdot g_{3}$, then we can derive as follows:

$$
\llbracket e \rrbracket_{\sigma}=\llbracket g_{1} \rrbracket_{\sigma} \circ\left(\llbracket g_{2} \rrbracket_{\sigma} \circ \llbracket g_{3} \rrbracket_{\sigma}\right)=\left(\llbracket g_{1} \rrbracket_{\sigma} \circ \llbracket g_{2} \rrbracket_{\sigma}\right) \circ \llbracket g_{3} \rrbracket_{\sigma}=\llbracket f \rrbracket_{\sigma}
$$

Homework exercise: show that if $\llbracket e+f \cdot g \rrbracket_{\sigma} \subseteq \llbracket g \rrbracket_{\sigma}$, then $\llbracket f^{*} \cdot e \rrbracket_{\sigma} \subseteq \llbracket g \rrbracket_{\sigma}$.

## Reasoning

Lemma
If $e \leqq f$ and $f \leqq e$, then $e \equiv f$.
Proof.
Recall that $e \leqq f$ and $f \leqq e$ means that $e+f \equiv f$ and $f+e \equiv e$, so

$$
e \equiv f+e \equiv e+f \equiv f
$$

## Reasoning

## Lemma

$e \cdot(f \cdot e)^{*} \leqq(e \cdot f)^{*} \cdot e$.
Proof.
We can first show that

$$
e+\left((e \cdot f)^{*} \cdot e\right) \cdot(f \cdot e) \leqq(e \cdot f)^{*} \cdot e
$$

To see this, we derive that

$$
\begin{aligned}
e+\left((e \cdot f)^{*} \cdot e\right) \cdot(f \cdot e) & \equiv e+\left((e \cdot f)^{*} \cdot(e \cdot f)\right) \cdot e \\
& \equiv\left(1+(e \cdot f)^{*} \cdot(e \cdot f)\right) \cdot e \\
& \equiv(e \cdot f)^{*} \cdot e
\end{aligned}
$$

## Completeness

Suppose showing that $e \equiv f$, is not working out.

- Maybe $\llbracket e \rrbracket_{\sigma} \neq \llbracket f \rrbracket_{\sigma}$ for a certain (cleverly constructed) $\sigma$.
- Maybe $\llbracket e \rrbracket_{\sigma}=\llbracket f \rrbracket_{\sigma}$ for all $\sigma$, but $e \equiv f$ is simply not provable.

How can you tell the difference?
By the end of this course, you will be able to exclude these possibilities.

## A language model - motivation

The interpretation $\sigma$ is cumbersome to carry around!
We need a model that is agnostic of the interpretation.

Solution: collect possible sequences of primitive actions.

## A language model - ground terms

## Definition (Words)

A word over $\Sigma$ is a sequence $a_{1} \cdots a_{n}$ where $a_{i} \in \Sigma$.
We write $\epsilon$ for the empty word.
When $w, x \in \Sigma^{*}$, we write $w x$ for the concatenation of $w$ and $x$.

## Definition (Languages)

A set of words is called a language. Let $L$ and $K$ be languages.
We write $L \cdot K$ for the language $\{w x: w \in L, x \in K\}$.
We also write $L^{*}$ for the language $\left\{w_{1} w_{2} \cdots w_{n}: w_{i} \in L\right\}$.
Note: this makes $\Sigma^{*}$ the set of all words.

## A language model — definition

Idea: collect all sequences of actions denoted by $e \in \mathbb{E}$ in a language.

Definition (Language model)
We define $\llbracket-\rrbracket_{\mathbb{E}}: \mathbb{E} \rightarrow 2^{\Sigma^{*}}$ inductively, as follows:

$$
\begin{aligned}
\llbracket 0 \rrbracket_{\mathbb{E}} & =\emptyset & \llbracket 1 \rrbracket_{\mathbb{E}} & =\{\epsilon\} \\
\llbracket e+f \rrbracket_{\mathbb{E}} & =\llbracket e \rrbracket_{\mathbb{E}} \cup \llbracket f \rrbracket_{\mathbb{E}} & \llbracket e \cdot f \rrbracket_{\mathbb{E}} & =\llbracket e \rrbracket_{\mathbb{E}} \cdot \llbracket f \rrbracket_{\mathbb{E}}
\end{aligned}
$$

## Connecting the models

How do these models interrelate?

Theorem (Equivalence of models)
Let e,f $f \in \mathbb{E}$. The following are equivalent:
(i) $\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}}$
(ii) for all $\sigma, \llbracket e \rrbracket_{\sigma}=\llbracket f \rrbracket_{\sigma}$.

Corollary
Let $e, f \in \mathbb{E}$. If $e \equiv f$, then $\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}}$.

## Connecting the models - languages to relations

Lemma
Let e, $f \in \mathbb{E}$. If $\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}}$, then for all $\sigma$, we have $\llbracket e \rrbracket_{\sigma}=\llbracket f \rrbracket_{\sigma}$.
Proof sketch.
First, define the action of $\sigma$ on a language as follows:

$$
\hat{\sigma}(L)=\bigcup_{\mathrm{a}_{1} \cdots \mathrm{a}_{n} \in L} \sigma\left(\mathrm{a}_{1}\right) \circ \cdots \circ \sigma\left(\mathrm{a}_{n}\right)
$$

Then, show that if $g \in \mathbb{E}$, then $\hat{\sigma}\left(\llbracket g \rrbracket_{\mathbb{E}}\right)=\llbracket g \rrbracket_{\sigma}$, by induction on $g$.
Finally, derive $\llbracket e \rrbracket_{\sigma}=\hat{\sigma}\left(\llbracket e \rrbracket_{\mathbb{E}}\right)=\hat{\sigma}\left(\llbracket f \rrbracket_{\mathbb{E}}\right)=\llbracket f \rrbracket_{\sigma}$

## Connecting the models - relations to languages

Lemma
Let e,f $f \in \mathbb{E}$. If $\llbracket e \rrbracket_{\sigma}=\llbracket f \rrbracket_{\sigma}$ for all $\sigma$, then $\llbracket e \rrbracket_{\mathbb{E}}=\llbracket f \rrbracket_{\mathbb{E}}$.
Proof sketch.
Consider the map $\sharp: 2^{\Sigma^{*}} \rightarrow 2^{\Sigma^{*} \times \Sigma^{*}}$, given by

$$
\sharp(L)=\left\{\langle w, w x\rangle: w \in \Sigma^{*}, x \in L\right\}
$$

One can show that $\sharp$ is injective. So, it suffices to show that $\sharp\left(\llbracket e \rrbracket_{\mathbb{E}}\right)=\sharp\left(\llbracket f \rrbracket_{\mathbb{E}}\right)$.
Let's choose $S=2^{\Sigma^{*} \times \Sigma^{*}}$, and set $\sigma(a)=\sharp(\{a\})$.
Now for $g \in \mathbb{E}$, we have $\llbracket g \rrbracket_{\sigma}=\sharp\left(\llbracket g \rrbracket_{\mathbb{E}}\right)$.
Finally, derive $\sharp\left(\llbracket e \rrbracket_{\mathbb{E}}\right)=\llbracket e \rrbracket_{\sigma}=\llbracket f \rrbracket_{\sigma}=\sharp\left(\llbracket f \rrbracket_{\mathbb{E}}\right)$.

Looking ahead

Tomorrow: incorporate reasoning about control flow.

