
Kleene Algebra — Lecture 1

ESSLLI 2023

Housekeeping

▶ Best way to reach me is by email.

▶ Website: https://kap.pe/esslli.

▶ 5 lectures, two 40-minute parts, 10-ish minute break.

▶ Extensive lecture notes, including exercises.

▶ It is always OK to ask me for clarification.

▶ It is always OK to discuss the exercises with other people.

https://kap.pe/esslli

Motivation

while a and b do

e;
while a do

f;
while a and b do

e;

while a do

if b then

e;
else

f;

These programs are the same. . . but how do you prove that?

Overview

▶ We can reason equationally, using properties of programs.

▶ We can reason operationally, by comparing abstract machines.

▶ These are two sides of the same coin.

Equational reasoning

▶ Speaks to our intuition — you have all done this before.

▶ Helps to relate programs to specifications.

▶ Allows us to prove validity of refactoring operations.

▶ Solve equations to find program satisfying a specification.

Operational reasoning

▶ Corresponds much more closely to what computers do.

▶ Long tradition of powerful automated reasoning.

▶ Will cover this in more detail from lecture 3 onwards.

Syntax

Primitive actions Σ = {a, b, c, . . . }.

Compound expressions:

E ∋ e, f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e∗

Think of e ∈ E as a pattern of behavior for a program.

Example: Integer Square Root

In a traditional language:

i ← 0;

while (i + 1)2 ≤ n do

i ← i + 1;

In our language (for now):

init · (guard · incr)∗ · validate

Semantics

Definition (Interpretation)

An interpretation is a pair ⟨S , σ⟩ where S is a set, and σ : Σ→ 2S×S .

Definition (Relational semantics)

Let σ be an interpretation. JeKσ is a relation on S , defined inductively by

J0Kσ = ∅ J1Kσ = idS JaKσ = σ(a)

Je + f Kσ = JeKσ ∪ Jf Kσ Je · f Kσ = JeKσ ◦ Jf Kσ Je∗Kσ = JeK∗σ

Example: Integer Square Root

init · (guard · incr)∗ · validate

S = {f : {i , n} → N}

σ(init) = {⟨s, s[0/i]⟩ : s ∈ S}

σ(guard) = {⟨s, s⟩ : (s(i) + 1)2 ≤ s(n)}

σ(incr) = {⟨s, s[s(i) + 1/i]⟩ : s ∈ S}

σ(validate) = {⟨s, s⟩ : (s(i) + 1)2 > s(n)}

Reasoning

Which things are true regardless of σ?

For instance, + is commutative:

Je + f Kσ = JeKσ ∪ Jf Kσ = Jf Kσ ∪ JeKσ = Jf + eKσ

Can you think of any other laws?

Axioms

Definition (Kleene Algebra)

We define ≡ as the smallest congruence on E satisfying the following:

e + 0 ≡ e e + e ≡ e e + f ≡ f + e e + (f + g) ≡ (e + f) + g

e · (f · g) ≡ (e · f) · g e · (f + g) ≡ e · f + e · g (e + f) · g ≡ e · g + f · g

e · 1 ≡ e ≡ 1 · e e · 0 ≡ 0 ≡ 0 · e 1 + e · e∗ ≡ e∗ ≡ 1 + e∗ · e

e + f · g ≦ g =⇒ f ∗ · e ≦ g e + f · g ≦ f =⇒ e · g∗ ≦ f

Here e ≦ f is shorthand for e + f ≦ f .

Axioms

Lemma (Soundness)

If e ≡ f , then JeKσ = Jf Kσ for all interpretations σ.

Proof sketch.
By induction on the construction of ≡; for instance, if e = g1 · (g2 · g3) and
f = (g1 · g2) · g3, then we can derive as follows:

JeKσ = Jg1Kσ ◦ (Jg2Kσ ◦ Jg3Kσ) = (Jg1Kσ ◦ Jg2Kσ) ◦ Jg3Kσ = Jf Kσ

Homework exercise: show that if Je + f · gKσ ⊆ JgKσ, then Jf ∗ · eKσ ⊆ JgKσ.

Reasoning

Lemma
If e ≦ f and f ≦ e, then e ≡ f .

Proof.
Recall that e ≦ f and f ≦ e means that e + f ≡ f and f + e ≡ e, so

e ≡ f + e ≡ e + f ≡ f

Reasoning

Lemma
e · (f · e)∗ ≦ (e · f)∗ · e.

Proof.
We can first show that

e + ((e · f)∗ · e) · (f · e) ≦ (e · f)∗ · e

To see this, we derive that

e + ((e · f)∗ · e) · (f · e) ≡ e + ((e · f)∗ · (e · f)) · e
≡ (1 + (e · f)∗ · (e · f)) · e
≡ (e · f)∗ · e

Completeness

Suppose showing that e ≡ f , is not working out.

▶ Maybe JeKσ ̸= Jf Kσ for a certain (cleverly constructed) σ.

▶ Maybe JeKσ = Jf Kσ for all σ, but e ≡ f is simply not provable.

How can you tell the difference?

By the end of this course, you will be able to exclude these possibilities.

A language model — motivation

The interpretation σ is cumbersome to carry around!

We need a model that is agnostic of the interpretation.

Solution: collect possible sequences of primitive actions.

A language model — ground terms

Definition (Words)

A word over Σ is a sequence a1 · · · an where ai ∈ Σ.

We write ϵ for the empty word.

When w , x ∈ Σ∗, we write wx for the concatenation of w and x .

Definition (Languages)

A set of words is called a language. Let L and K be languages.

We write L · K for the language {wx : w ∈ L, x ∈ K}.

We also write L∗ for the language {w1w2 · · ·wn : wi ∈ L}.

Note: this makes Σ∗ the set of all words.

A language model — definition

Idea: collect all sequences of actions denoted by e ∈ E in a language.

Definition (Language model)

We define J−KE : E→ 2Σ
∗
inductively, as follows:

J0KE = ∅ J1KE = {ϵ} JaKE = {a}

Je + f KE = JeKE ∪ Jf KE Je · f KE = JeKE · Jf KE Je∗KE = JeK∗E

Connecting the models

How do these models interrelate?

Theorem (Equivalence of models)

Let e, f ∈ E. The following are equivalent:

(i) JeKE = Jf KE
(ii) for all σ, JeKσ = Jf Kσ.

Corollary

Let e, f ∈ E. If e ≡ f , then JeKE = Jf KE.

Connecting the models — languages to relations

Lemma
Let e, f ∈ E. If JeKE = Jf KE, then for all σ, we have JeKσ = Jf Kσ.

Proof sketch.
First, define the action of σ on a language as follows:

σ̂(L) =
⋃

a1···an∈L
σ(a1) ◦ · · · ◦ σ(an)

Then, show that if g ∈ E, then σ̂(JgKE) = JgKσ, by induction on g .

Finally, derive JeKσ = σ̂(JeKE) = σ̂(Jf KE) = Jf Kσ

Connecting the models — relations to languages

Lemma
Let e, f ∈ E. If JeKσ = Jf Kσ for all σ, then JeKE = Jf KE.

Proof sketch.
Consider the map ♯ : 2Σ

∗ → 2Σ
∗×Σ∗

, given by

♯(L) = {⟨w ,wx⟩ : w ∈ Σ∗, x ∈ L}

One can show that ♯ is injective. So, it suffices to show that ♯(JeKE) = ♯(Jf KE).

Let’s choose S = 2Σ
∗×Σ∗

, and set σ(a) = ♯({a}).

Now for g ∈ E, we have JgKσ = ♯(JgKE).

Finally, derive ♯(JeKE) = JeKσ = Jf Kσ = ♯(Jf KE).

Looking ahead

Tomorrow: incorporate reasoning about control flow.

