Kleene Algebra — Lecture 1

ESSLLI 2023

Housekeeping

- Best way to reach me is by email.
- Website: https://kap.pe/esslli.
- ▶ 5 lectures, two 40-minute parts, 10-ish minute break.
- Extensive lecture notes, including exercises.
- ▶ It is *always* OK to ask me for clarification.
- ▶ It is *always* OK to discuss the exercises with other people.

Motivation

These programs are the same... but how do you prove that?

- ▶ We can reason *equationally*, using properties of programs.
- ▶ We can reason *operationally*, by comparing abstract machines.
- ▶ These are *two sides of the same coin*.

- Speaks to our intuition you have all done this before.
- Helps to relate programs to specifications.
- Allows us to prove validity of refactoring operations.
- Solve equations to find program satisfying a specification.

Operational reasoning

- Corresponds much more closely to what computers do.
- Long tradition of powerful automated reasoning.
- ▶ Will cover this in more detail from lecture 3 onwards.

Syntax

Primitive actions $\Sigma = \{a, b, c, \dots\}.$

Compound expressions:

$$\mathbb{E} \ni e, f ::= 0 \mid 1 \mid a \in \Sigma \mid e + f \mid e \cdot f \mid e^*$$

Think of $e \in \mathbb{E}$ as a *pattern of behavior* for a program.

Example: Integer Square Root

In a traditional language:

 $i \leftarrow 0;$ while $(i+1)^2 \le n$ do $| i \leftarrow i+1;$ In our language (for now):

 $\texttt{init} \cdot (\texttt{guard} \cdot \texttt{incr})^* \cdot \texttt{validate}$

Semantics

Definition (Interpretation)

An *interpretation* is a pair $\langle S, \sigma \rangle$ where S is a set, and $\sigma : \Sigma \to 2^{S \times S}$.

Definition (Relational semantics)

Let σ be an interpretation. $\llbracket e \rrbracket_{\sigma}$ is a relation on S, defined inductively by

$$\llbracket 0 \rrbracket_{\sigma} = \emptyset$$
 $\llbracket 1 \rrbracket_{\sigma} = \mathsf{id}_S$ $\llbracket a \rrbracket_{\sigma} = \sigma(a)$

$$\llbracket e + f \rrbracket_{\sigma} = \llbracket e \rrbracket_{\sigma} \cup \llbracket f \rrbracket_{\sigma} \qquad \llbracket e \cdot f \rrbracket_{\sigma} = \llbracket e \rrbracket_{\sigma} \circ \llbracket f \rrbracket_{\sigma} \qquad \llbracket e^* \rrbracket_{\sigma} = \llbracket e \rrbracket_{\sigma}^*$$

Example: Integer Square Root

 σ

$$\texttt{init} \cdot (\texttt{guard} \cdot \texttt{incr})^* \cdot \texttt{validate}$$

$$S = \{f : \{i, n\} \to \mathbb{N}\}$$

$$egin{aligned} &\sigma(\texttt{init}) = \{\langle s,s[0/i]
angle: s \in S\} \ &\sigma(\texttt{guard}) = \{\langle s,s
angle: (s(i)+1)^2 \leq s(n)\} \ &\sigma(\texttt{incr}) = \{\langle s,s[s(i)+1/i]
angle: s \in S\} \ &(\texttt{validate}) = \{\langle s,s
angle: (s(i)+1)^2 > s(n)\} \end{aligned}$$

Reasoning

Which things are true regardless of σ ?

For instance, + is commutative:

$$\llbracket e + f \rrbracket_{\sigma} = \llbracket e \rrbracket_{\sigma} \cup \llbracket f \rrbracket_{\sigma} = \llbracket f \rrbracket_{\sigma} \cup \llbracket e \rrbracket_{\sigma} = \llbracket f + e \rrbracket_{\sigma}$$

Can you think of any other laws?

Axioms

Definition (Kleene Algebra)

We define \equiv as the smallest congruence on $\mathbb E$ satisfying the following:

$$e + 0 \equiv e \qquad e + e \equiv e \qquad e + f \equiv f + e \qquad e + (f + g) \equiv (e + f) + g$$

$$e \cdot (f \cdot g) \equiv (e \cdot f) \cdot g \qquad e \cdot (f + g) \equiv e \cdot f + e \cdot g \qquad (e + f) \cdot g \equiv e \cdot g + f \cdot g$$

$$e \cdot 1 \equiv e \equiv 1 \cdot e \qquad e \cdot 0 \equiv 0 \equiv 0 \cdot e \qquad 1 + e \cdot e^* \equiv e^* \equiv 1 + e^* \cdot e$$

$$e + f \cdot g \leq g \implies f^* \cdot e \leq g \qquad e + f \cdot g \leq f \implies e \cdot g^* \leq f$$
Here $e \leq f$ is shorthand for $e + f \leq f$.

Axioms

Lemma (Soundness)

If $e \equiv f$, then $\llbracket e \rrbracket_{\sigma} = \llbracket f \rrbracket_{\sigma}$ for all interpretations σ .

Proof sketch.

By induction on the construction of \equiv ; for instance, if $e = g_1 \cdot (g_2 \cdot g_3)$ and $f = (g_1 \cdot g_2) \cdot g_3$, then we can derive as follows:

$$\llbracket e \rrbracket_{\sigma} = \llbracket g_1 \rrbracket_{\sigma} \circ (\llbracket g_2 \rrbracket_{\sigma} \circ \llbracket g_3 \rrbracket_{\sigma}) = (\llbracket g_1 \rrbracket_{\sigma} \circ \llbracket g_2 \rrbracket_{\sigma}) \circ \llbracket g_3 \rrbracket_{\sigma} = \llbracket f \rrbracket_{\sigma}$$

Homework exercise: show that if $\llbracket e + f \cdot g \rrbracket_{\sigma} \subseteq \llbracket g \rrbracket_{\sigma}$, then $\llbracket f^* \cdot e \rrbracket_{\sigma} \subseteq \llbracket g \rrbracket_{\sigma}$.

Reasoning

Lemma If $e \leq f$ and $f \leq e$, then $e \equiv f$.

Proof.

Recall that $e \leq f$ and $f \leq e$ means that $e + f \equiv f$ and $f + e \equiv e$, so

$$e \equiv f + e \equiv e + f \equiv f$$

Reasoning

Lemma $e \cdot (f \cdot e)^* \leq (e \cdot f)^* \cdot e.$

Proof.

We can first show that

$$e + ((e \cdot f)^* \cdot e) \cdot (f \cdot e) \leq (e \cdot f)^* \cdot e$$

To see this, we derive that

$$egin{aligned} e + ((e \cdot f)^* \cdot e) \cdot (f \cdot e) &\equiv e + ((e \cdot f)^* \cdot (e \cdot f)) \cdot e \ &\equiv (1 + (e \cdot f)^* \cdot (e \cdot f)) \cdot e \ &\equiv (e \cdot f)^* \cdot e \end{aligned}$$

Completeness

Suppose showing that $e \equiv f$, is not working out.

- Maybe $\llbracket e \rrbracket_{\sigma} \neq \llbracket f \rrbracket_{\sigma}$ for a certain (cleverly constructed) σ .
- Maybe $\llbracket e \rrbracket_{\sigma} = \llbracket f \rrbracket_{\sigma}$ for all σ , but $e \equiv f$ is simply not provable.

How can you tell the difference?

By the end of this course, you will be able to exclude these possibilities.

The interpretation σ is cumbersome to carry around!

We need a model that is agnostic of the interpretation.

Solution: collect possible sequences of primitive actions.

A language model — ground terms

Definition (Words)

A word over Σ is a sequence $a_1 \cdots a_n$ where $a_i \in \Sigma$.

We write ϵ for the *empty word*.

When $w, x \in \Sigma^*$, we write wx for the concatenation of w and x.

Definition (Languages)

A set of words is called a *language*. Let L and K be languages.

We write $L \cdot K$ for the language $\{wx : w \in L, x \in K\}$.

We also write L^* for the language $\{w_1w_2\cdots w_n: w_i \in L\}$.

Note: this makes Σ^* the set of all words.

Idea: collect all sequences of actions denoted by $e \in \mathbb{E}$ in a language.

Definition (Language model)

We define $[\![-]\!]_{\mathbb{E}}:\mathbb{E}\to 2^{\Sigma^*}$ inductively, as follows:

$$\llbracket \mathbf{0} \rrbracket_{\mathbb{E}} = \emptyset \qquad \qquad \llbracket \mathbf{1} \rrbracket_{\mathbb{E}} = \{\epsilon\} \qquad \qquad \llbracket \mathbf{a} \rrbracket_{\mathbb{E}} = \{\mathbf{a}\}$$

$$\llbracket e+f
rbracket_{\mathbb{E}} = \llbracket e
rbracket_{\mathbb{E}} \cup \llbracket f
rbracket_{\mathbb{E}}$$
 $\llbracket e\cdot f
rbracket_{\mathbb{E}} = \llbracket e
rbracket_{\mathbb{E}} \cdot \llbracket f
rbracket_{\mathbb{E}}$ $\llbracket e^*
rbracket_{\mathbb{E}} = \llbracket e
rbracket_{\mathbb{E}}^*$

Connecting the models

How do these models interrelate?

Theorem (Equivalence of models) Let $e, f \in \mathbb{E}$. The following are equivalent: (i) $\llbracket e \rrbracket_{\mathbb{E}} = \llbracket f \rrbracket_{\mathbb{E}}$ (ii) for all σ , $\llbracket e \rrbracket_{\sigma} = \llbracket f \rrbracket_{\sigma}$.

Corollary

Let $e, f \in \mathbb{E}$. If $e \equiv f$, then $\llbracket e \rrbracket_{\mathbb{E}} = \llbracket f \rrbracket_{\mathbb{E}}$.

Connecting the models — languages to relations

Lemma

Let
$$e, f \in \mathbb{E}$$
. If $\llbracket e \rrbracket_{\mathbb{E}} = \llbracket f \rrbracket_{\mathbb{E}}$, then for all σ , we have $\llbracket e \rrbracket_{\sigma} = \llbracket f \rrbracket_{\sigma}$.

Proof sketch.

First, define the action of σ on a language as follows:

$$\hat{\sigma}(L) = \bigcup_{\mathtt{a}_1 \cdots \mathtt{a}_n \in L} \sigma(\mathtt{a}_1) \circ \cdots \circ \sigma(\mathtt{a}_n)$$

Then, show that if $g \in \mathbb{E}$, then $\hat{\sigma}(\llbracket g \rrbracket_{\mathbb{E}}) = \llbracket g \rrbracket_{\sigma}$, by induction on g.

Finally, derive $\llbracket e \rrbracket_{\sigma} = \hat{\sigma}(\llbracket e \rrbracket_{\mathbb{E}}) = \hat{\sigma}(\llbracket f \rrbracket_{\mathbb{E}}) = \llbracket f \rrbracket_{\sigma}$

Connecting the models — relations to languages

Lemma Let $e, f \in \mathbb{E}$. If $\llbracket e \rrbracket_{\sigma} = \llbracket f \rrbracket_{\sigma}$ for all σ , then $\llbracket e \rrbracket_{\mathbb{E}} = \llbracket f \rrbracket_{\mathbb{E}}$.

Proof sketch.

Consider the map $\sharp: 2^{\Sigma^*} \to 2^{\Sigma^* \times \Sigma^*}$, given by

$$\sharp(L) = \{ \langle w, wx \rangle : w \in \Sigma^*, x \in L \}$$

One can show that \sharp is injective. So, it suffices to show that $\sharp(\llbracket e \rrbracket_{\mathbb{E}}) = \sharp(\llbracket f \rrbracket_{\mathbb{E}})$.

Let's choose $S = 2^{\Sigma^* \times \Sigma^*}$, and set $\sigma(a) = \sharp(\{a\})$.

Now for $g \in \mathbb{E}$, we have $\llbracket g \rrbracket_{\sigma} = \sharp(\llbracket g \rrbracket_{\mathbb{E}})$.

Finally, derive $\sharp(\llbracket e \rrbracket_{\mathbb{E}}) = \llbracket e \rrbracket_{\sigma} = \llbracket f \rrbracket_{\sigma} = \sharp(\llbracket f \rrbracket_{\mathbb{E}}).$

Looking ahead

Tomorrow: incorporate reasoning about control flow.