
Kleene Algebra — Lecture 5

Tobias Kappé

ESSLLI 2023

1 Today’s lecture

In the previous lecture, we talked about “solving” automata to obtain a rational
expression for each state’s language. We then built upon the machinery we used
to construct solutions to develop a theory of matrices over rational expressions,
and we found out that those matrices obey the same laws as the rational ex-
pressions they hold. In this final lecture, we will put all of this development to
work, and ultimately resolve the question that was raised in the first lecture: are
two rational expressions with the same semantics, also equivalent by the laws of
Kleene algebra? The road towards this goal is built on three crucial insights.

• The first insight is to exploit a bisimulation between states of an automa-
ton to show that those states have equivalent solutions; here, we use the
solution technique based on matrices discussed in the last lecture.

• The second insight is that converting an expression to an automaton and
then back into an automaton is invariant w.r.t. provable equivalence. This
is called the “round-trip theorem”, and we prove it using the first insight.

• The third insight is that the solutions to an automaton can be recovered
from the solutions to its powerset automaton, and vice versa. As before,
the proof of this property also relies on the first insight.

These three facts will ultimately be tied together to obtain completeness, by
showing that expressions with the same language are converted to bisimilar
deterministic automata, which must have equivalent solutions by the first point,
and be provably equivalent to the original expressions by the second and third
point — thus, by transitivity, the expressions are equivalent by the laws of KA.

2 Matrices and bisimulations

We can compute the star of a matrix over rational terms, and this operator be-
haves similarly to the star of a plain rational term. We are now going to use this
operation to show that bisimilar states in automata yield provably equivalent
expressions. In a way, this validates our work so far: if you have two equiva-
lent machines, in that they can mimic one another in terms of behavior, then
converting those machines back into programs gives you equivalent expressions.

To state the result, we need to first widen our view of matrices and matrix
multiplication to include “rectangular” matrices, as follows.

1

Definition 5.1. Let S1, S2 and S3 be sets. A S1-by-S2 matrix is a M function
from S1 × S2 to E. If M is an S1-by-S2 matrix, and N is an S2-by-S3 matrix,
then their multiplication is the S1-by-S3 matrix given by

(M ·N)(s1, s3) =
∑

s2∈S2

M(s1, s2) ·N(s2, s3)

Furthermore, if b is an S2-vector, then M · b is the S1-vector given by

(M · b)(s1) =
∑

s2∈S2

M(s1, s2) · b(s2)

Clearly, S-matrices and their operations on other S-matrices or S-vectors as
used up to this point are a special case of the above. Specifically, what we have
referred to as an S-matrix up to this point is an S-by-S matrix, and multiplica-
tion of S-matrices coincides with their multiplications as S-by-S-matrices. This
broader view of matrices allows us to encode relations as well.

Definition 5.2. Let S1 and S2 be sets, and let R ⊆ S1×S2 be a relation between
S1 and S2. We write MR for the matrix given by MR(s1, s2) = [s1 R s2].

Also, recall that when A = ⟨Q,F, δ⟩, we write MA for the Q-matrix where

M(q, q′) =
∑
q

a−→q′

a

Given a S1-by-S2 matrix M , we will also write MT for the transpose of M ,
which is the S2-by-S1 matrix given by MT (s2, s1) = M(s1, s2).

We can now state two useful properties of automata and relations as matri-
ces. The first property is a relation between the acceptance vectors.

Lemma 5.3. Let Ai = ⟨Qi,→i, Ii, Fi⟩ be an automaton for i ∈ {0, 1}. Further-
more, let R be a simulation of A0 by A1. Then MT

R · bA0
≦ bA1

.

Proof. First, let’s check our types. We know that MT
R is a Q1-by-Q0 matrix,

and bA0
is a Q0-vector; this makes MR · bA0

a Q1-vector, just like bA1
. To show

that MT
R · bA0

≦ bA1
, we need to show that for all q1 ∈ Q1, we have∑

q0∈Q0

MT
R (q1, q0) · bA0

(q0) =
∑

q0∈Q0

[q0 R q1] · [q0 ∈ F0] ≦ [q1 ∈ F1]

We can show that this holds by arguing that for each q0 ∈ Q0, we have that
[q0 R q1] · [q0 ∈ F0] is below [q1 ∈ F1]. There are two cases to distinguish. On
the one hand, if q0 ̸R q1 or q0 ̸∈ F0, then [q0 R q1] · [q0 ∈ F] ≡ 0, and so the
claim holds immediately. Otherwise, if q0 R q1 and q0 ∈ F0, then q1 ∈ F1, by
virtue of R being a simulation. Hence [q1 Rc q0] · [q0 ∈ F0] ≡ 1 = [q1 ∈ F1].

The second property relates the transition matrices, as follows.

Lemma 5.4. Let Ai = ⟨Qi,→i, Ii, Fi⟩ be an automaton for i ∈ {0, 1}. Further-
more, let R be a simulation of A0 by A1. Then MT

R ·MA0
≦ MA1

·MT
R .

2

Proof. Let’s get our types right first. Since R is a relation between Q0 and
Q1, we know that MT

R is a Q1-by-Q0 matrix. We also know that MA0
is a

Q0-matrix, and MA1
is a Q1-matrix. This makes MT

R ·MA0
a Q1-by-Q0 matrix,

just like MA1 ·MT
R . So at least the comparison between them is sensible.

To prove our goal, we need to show that for q1 ∈ Q1 and q0 ∈ Q0, we have
(MT

R ·MA0
)(q1, q0) ≦ (MA1

·MT
R)(q1, q0), or, expanding out the definitions:∑

q′0∈Q0

(
[q′0 R q1] ·

∑
q′0

a−→0q0

a
)
≦

∑
q′1∈Q1

((∑
q1

a−→1q′1

a
)
· [q′1 Rc q0]

)

Applying distributivity to both ends tells us the above is equivalent to∑
q′0∈Q0

∑
q′0

a−→0q0

[q′0 R q1] · a ≦
∑

q′1∈Q1

∑
q1

a−→1q′1

a · [q0 R q1]

To show the above, it suffices to prove that every term in the sum on the left-
hand side is below some term on the right-hand side, w.r.t. ≦. To this end, let

q′0 ∈ Q0 and a ∈ Σ be such that q′0
a−→0 q0. If q′0 ̸R q1, then [q0 R q′1] · a ≡ 0,

and so the claim holds immediately. Otherwise, if q′0 R q1, then there exists a

q′1 ∈ Q1 such that q1
a−→1 q′1 and q0 R q′1, since R is a simulation. We then find

that [q′0 R q1] · a = 1 · a ≡ a · 1 = a · [q0 R q′1]. The latter is precisely a term on
the right-hand side, and so the claim follows.

As a matter of fact, we can leverage our newly derived facts about the star
of a matrix to prove the last fact about transition- and bisimulation matrices.

Corollary 5.5. Let Ai = ⟨Qi,→i, Ii, Fi⟩ be an automaton for i ∈ {0, 1}, and
let R be simulation of A0 by A1. Then MT

R ·M∗
A1

≦ M∗
A0

·MT
R .

Proof sketch. By Lemma 5.4 and the fact that the laws of KA also apply to
matrices. More precisely, it is analogous to the proof that if e, f, g ∈ E with
e · f ≦ g · e, then e · f∗ ≦ g∗ · e, which is part of today’s homework.

These two facts now allow us to reach the desired conclusion, namely that
expressions obtained for two bisimilar states are provably equivalent.

Theorem 5.6. Let Ai = ⟨Qi,→i, Ii, Fi⟩ be an automaton for i ∈ {0, 1}, and let
R be a simulation of A0 by A1. If q0 R q1, and e0, e1 ∈ E are obtained from the
automata-to-expressions procedure for q0 and q1, then e0 ≦ e1.

Proof. From our automata-to-expressions procedure, we know that for both

3

i ∈ {0, 1} that ei = (M∗
Ai

· bAi
)(qi). This then allows us to derive as follows:

e0 = (M∗
A0

· bA0
)(q0)

≡ [q0 R q1] · (M∗
A0

· bA0
)(q0) (since q0 R q1)

≦
∑

q′0∈Q0

[q′0 R q1] · (M∗
A0

· bA0
)(q′0)

≦
∑

q′0∈Q0

MT
R (q1, q

′
0) · (M∗

A0
· bA0

)(q′0) (def. MT
R)

= (MT
R ·M∗

A0
· bA0)(q1)

≦ (M∗
A1

·MT
R · bA0

)(q1) (Corollary 5.5)

≦ (M∗
A1

· bA1
)(q1) (Lemma 5.3)

= e1

Theorem 5.7. Let Ai = ⟨Qi,→i, Ii, Fi⟩ be an automaton for i ∈ {0, 1}, and let
R be a bisimulation between A0 by A1. If q0 R q1, and e0, e1 ∈ E are obtained
from the automata-to-expressions procedure for q0 and q1, then e0 ≡ e1.

3 The round-trip theorem

We know how to obtain an automaton from an expression, and vice versa. This
means that we can transform one expression into another (equivalent) expres-
sion, which raises the question: is “round-tripped” expression equivalent to the
initial expression by the laws of KA, or is the equivalence lost in translation?
More precisely: for each e ∈ E, let’s write K(e) for the least solution to the
state e in the Antimirov automaton for e; what we will show is that e ≡ K(e).

The first step leverages the Fundamental Theorem to show that we can
trivially obtain a solution to each Antimirov automaton, covering one direction.

Lemma 5.8. Let e ∈ E. Now K(e) ≦ e.

Proof. Let Ae = ⟨ρ̂(e),→E, {e},A ∩ ρ̂(e)⟩ be the Antimirov automaton for e,
and let s be the identity on ρ̂(e). Now s is a solution to Ae, i.e., for e

′ ∈ ρ̂(e):

[e′ ∈ A] +
∑

e′
a−→Ee′′

a · e′′ ≦ e′

This follows immediately from the Fundamental Theorem. Because K(e) is the
least solution to e ∈ ρ̂(e) in Ae, it follows that K(e) ≦ s(e) = e.

For the other direction, we first consider another technical lemma, which
shows that we can interrelate several round-tripped expressions easily.

Lemma 5.9. The following hold for all e, f, g ∈ E:

K(e),K(f) ≦ K(e+ f) K(e · g + f · g) ≦ K((e+ f) · g)

K(e · (f · g)) ≦ K((e · f) · g) K((1 + e · e∗) · f) ≦ K(e∗ · f)

K(1 · e) ≦ K(e) K(e · 1) ≦ K(e)

4

Proof. By Theorem 5.6, it suffices to demonstrate a simulation of the Antimirov
automaton for the expression under K on the left by that on the right.

For each of the properties, we propose the necessary relation; showing that
this yields a simulation that fits our needs is left as an exercise.

• For K(e) ≦ K(e + f), take R = {⟨e, e + f⟩} ∪ {⟨e′, e′⟩ : e′ ∈ ρ(e)}. For
K(f) ≦ K(e+ f), take the same R but relate f to e+ f instead.

• For K(e · g + f · g) ≦ K((e+ f) · g), take the following relation:

R = {⟨e · g + f · g, (e+ f) · g⟩}
∪ {⟨e′ · g, e′ · g⟩ : e′ ∈ ρ(e)}
∪ {⟨f ′ · g, f ′ · g⟩ : e′ ∈ ρ(f)}
∪ {⟨g′, g′⟩ : g′ ∈ ρ(g)}

• For K(e · (f · g)) ≦ K((e · f) · g), take the following relation:

R = {⟨e · (f · g), (e · f) · g⟩}
∪ {⟨e′ · (f · g), (e′ · f) · g⟩ : e′ ∈ ρ(e)}
∪ {⟨f ′ · g, f ′ · g⟩ : f ′ ∈ ρ(f)}
∪ {⟨g′, g′⟩ : g′ ∈ ρ(g)}

• For K((1 + e · e∗) · f) ≦ K(e∗ · f), take the following relation:

R = {⟨(1 + e · e∗) · f, e∗ · f⟩} ∪ {⟨e′ · e∗ · f, e′ · e∗ · f⟩ : e′ ∈ ρ(e)}

• For K(1 · e) ≦ K(e), take R = {⟨1 · e, e⟩} ∪ {⟨e′, e′⟩ : e′ ∈ ρ(e)}.
• For K(e · 1) ≦ K(e), take R = {⟨e · 1, e⟩} ∪ {⟨e′ · 1, e′⟩ : e′ ∈ ρ(e)}.

This lemma then allows us to show the other direction of the round-trip property
we were looking for. Key to the proof here is that we first prove a slightly more
general property, which makes the inductive argument possible.

Lemma 5.10. Let e ∈ E. Now e ≦ K(e).

Proof. We claim that, for all f ∈ E, it holds that e ·K(f) ≦ K(e ·f). To see this,
we proceed by induction on e. In the base, there are three cases to consider.

• If e = 0, then the claim holds immediately.

• If e = 1, then we derive using Lemma 5.9 as follows:

e ·K(f) = 1 ·K(f) ≡ K(f) ≦ K(1 · f) = K(e · f)

• If e = a for some a ∈ Σ, then note that R = {⟨f, 1 · f⟩} ∪ {⟨f ′, f ′⟩ : f ′ ∈
ρ(f)} is a simulation of Af by Aa·f . Thus, if sf is the least solution to the
former and sa·f is the least solution to the latter, then sf (f) ≦ sa·f (1 · f)

5

by Theorem 5.6. We can then derive as follows:

e ·K(f) = a · sf (f)
≦ a · sa·f (1 · f)

≦ [a · f ∈ A] +
∑

a·f
a−→f ′

a · sa·f (f ′)

≦ sa·f (a · f)
= K(e · f)

For the inductive step, there are again three cases to consider, based on the
top-level compositional operator. For each case, our induction hypothesis is
that the claim holds for each of the direct subexpressions.

• If e = e0 + e1, then derive

e ·K(f) = (e0 + e1) ·K(f)

≡ e0 ·K(f) + e1 ·K(f)

≦ K(e0 · f) +K(e1 · f) (IH)

≦ K(e0 · f + e1 · f) (Lemma 5.9)

≦ K((e0 + e1) · f) (Lemma 5.9)

= K(e · f)

• If e = e0 · e1, then derive

e ·K(f) = (e0 · e1) ·K(f)

≡ e0 · (e1 ·K(f))

≦ e0 ·K(e1 · f) (IH)

≦ K(e0 · (e1 · f)) (IH)

≦ K((e0 · e1) · f) (Lemma 5.9)

= K(e · f)

• If e = e∗0, then we derive as follows:

K(f) + e0 ·K(e · f) ≦ K(f) +K((e0 · e) · f) (IH)

≦ K(f) +K(e0 · (e · f)) (Lemma 5.9)

≦ K(f + (e0 · e) · f) (Lemma 5.9)

≦ K((1 + e0 · e) · f) (Lemma 5.9)

≦ K(e · f) (Lemma 5.9)

It then follows that e ·K(f) = e∗0 ·K(f) ≦ K(e · f).

To reach the claim, we note that 1 ≦ K(1) since 1 ∈ A; thus, by Lemma 5.9,

e ≡ e · 1 ≦ e ·K(1) ≦ K(e · 1) ≡ K(e)

These two lemmas together now imply the property we were looking for.

Theorem 5.11 (Round-trip). Let e ∈ E. Now e ≡ K(e).

6

4 Solutions to powerset automata

We now arrive at the final bit of insight that we need to establish completeness.
Here, the idea is that since the powerset construction preserves the language
of an automaton, the solutions should also be interrelated. This is indeed the
case, in a strong sense: the least solution to a compound state in the powerset
automaton is obtained by summing together the solutions to its components in
in the original automaton. More formally, we can show the following.

Lemma 5.12. Let A = ⟨Q,→, I, F ⟩ be an automaton and let A′ = ⟨2Q,→′

, {I}, F ′⟩ be its powerset automaton. Furthermore, let s and s′ be the least
solutions to A and A′ respectively. For S ⊆ Q we have that s′(S) ≡

∑
q∈S s(q).

Proof. Let t′ : 2Q → E be given by t(S) =
∑

q∈S s(q). We claim that t′ is a
solution to A′. To this end, we need to argue the following:

1. if S ∈ F ′ then 1 ≦ t′(S); and

2. if S
a−→

′
S′, then a · t′(S′) ≦ t′(S).

For the first property, note that if S ∈ F ′ then there exists a q ∈ S such that
q ∈ F , by construction of F ′. It then follows that 1 ≦ s(q) ≦ t′(S).

For the second property, we can expand the definition of t′ to find that it
suffices to show that if q′ ∈ S′, then a ·s(q′) ≦ s(q) for some q ∈ S. By definition

of the powerset construction, we have that S′ = {q′ : ∃q ∈ S. q
a−→ q′}; thus, if

q′ ∈ S′ then we can choose q ∈ S such that q
a−→ q′, and q

a−→ q′; since s is a
solution to A, the latter implies that a · s(q′) ≦ s(q).

Now, since t′ is a solution to A′ and s′ is the least solution to A′, we have
that s′(S) ≦ t′(S) for all S ⊆ Q, or in other words that s′(S) ≦

∑
q∈S s(q) for

all S ⊆ Q. This establishes one half of our claim.
For the other half, first note that if R = {⟨q, S⟩ : q ∈ S ⊆ Q}, then R

is a simulation of A by A′ — after all, if q ∈ F and q R S then S ∈ F ′ by
construction, and if q

a−→ q′ and q R S, then choose S′ = {q′ ∈ Q : q
a−→ q′} to

find that S
a−→ S′ and q′ ∈ S′. By Theorem 5.6 it follows that if q ∈ S ⊆ Q,

then s(q) ≦ s′(S). This implies that if S ⊆ Q, then
∑

q∈S s(q) ≦ s′(S).

5 Completeness

Finally, we have every ingredient in place to reap the fruit of our labors.

Theorem 5.13 (Completeness). Let e, f ∈ E. If JeKE = JfKE, then e ≡ f .

Proof. Because JeKE = JfKE, we know that LAe(e) = LAf
(f), and therefore

LA′
e
({e}) = LA′

f
({f}). Since A′

e and A′
f are deterministic, there exists a bisimu-

lation that relates their initial states. Now, let s′e and s′f be the least solutions to
A′

e and A′
f respectively. By Theorem 5.7, we then have that s′e({e}) ≡ s′f ({f}).

Next, let se and sf be the least solutions to Ae and Af respectively. By
Lemma 5.12, we have that se(e) ≡ s′e({e}) and sf (f) ≡ s′f ({f}), and thus
by transitivity that K(e) = se(e) ≡ sf (f) = K(f). By Theorem 5.11, we have
that e ≡ K(e) and f ≡ K(f), and hence that e ≡ f .

7

Some remarks are in order. First, note that the theorem we have is strictly
about equations. There is a more general claim you can make, and we have seen
it pop up in some form a number of times: the Horn equation, of the form

e0 ≡ f0 ∧ · · · ∧ en−1 ≡ fn−1 =⇒ e ≡ f

There are several of these that hold in Kleene Algebra, such as e · f ≦ g · e =⇒
e · f∗ ≦ g∗ · e. However, Theorem 5.13 does not guarantee that they are all
provable. The study of Kleene Algebra with Hypotheses is dedicated to finding
out which kinds of premises can be used to recover a completeness result.

Second, the pattern of the proof in Theorem 5.13 is actually quite common
in the realm of completeness results: given that the semantics of two expressions
are equivalent, first show that you can convert them into some kind of equivalent
“normal form” — in this case, K(e) and K(f) — and then argue that the
semantic equivalence of terms in normal form implies that they are provably
equivalent. We see a similar pattern in, for example, the completeness proof of
Boolean Algebra, or several similar results within Process Algebra.

Lastly, note that the completeness result, when composed with decidability
of language equivalence, gives us a new decidability result, namely that given
e, f ∈ E, it is decidable whether e ≡ f : simply decide whether JeKE = JfKE.
In effect, this gives us a road towards proof mechanization: if you want to
prove that e ≡ f , you do not need to finagle with axioms, but can instead
ask an algorithm to figure it out for you. This is particularly useful when you
are working through a larger proof about your program, and want to verify
whether a certain equivalence holds in general. Proof assistants such as Coq
can be scripted to try and automatically prove statements of Kleene Algebra.

6 Homework

1. Let e, f, g ∈ E be such that e · f ≦ g · e. Show that e · f∗ ≦ g∗ · e.

2. Show that each of the relations proposed in Lemma 5.9 is a simulation.

3. Let R and S be relations. Show that MR◦S ≡ MR ·MS .

4. Let R be a relation. Show that MR∗ ≡ M∗
R.

Hint: show that M∗
R ≦ MR∗ and MR∗ ≦ M∗

R. For both inclusions, you
need to use facts about the star of a matrix, but the implication is only
necessary for one of them.

7 Bibliographical notes

The proof that solutions to automata are invariant w.r.t. bisimilarity is adapted
from Jacobs’s account [Jac06], who credits the idea to Kozen [Koz01]. A version
of the round trip theorem can be found in both papers.

There are a number of completeness results for laws about programs, includ-
ing those by Salomaa [Sal66], Conway [Con71], Krob [Kro90], Boffa [Bof90],
and Kozen [Koz94]. The result discussed in this lecture was first shown by
Kozen [Koz94], but his tactic was rather different. The presentation we used is
adapted from Jacobs [Jac06], who credits the proofs to Kozen [Koz01]. Palka
showed that the finite model property can also be recovered [Pal05].

8

References

[Bof90] Maurice Boffa. Une remarque sur les systèmes complets d’identités
rationnelles. ITA, 24:419–428, 1990.

[Con71] John Horton Conway. Regular Algebra and Finite Machines. Chapman
and Hall, Ltd., London, 1971.

[Jac06] Bart Jacobs. A bialgebraic review of deterministic automata, regular
expressions and languages. In Algebra, Meaning, and Computation,
Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th
Birthday, pages 375–404, 2006. doi:10.1007/11780274_20.

[Koz94] Dexter Kozen. A completeness theorem for Kleene algebras and the
algebra of regular events. Inf. Comput., 110(2):366–390, 1994. doi:

10.1006/inco.1994.1037.

[Koz01] Dexter Kozen. Myhill-Nerode relations on automatic systems and the
completeness of Kleene algebra. In STACS, pages 27–38, 2001. doi:

10.1007/3-540-44693-1_3.

[Kro90] Daniel Krob. A complete system of b-rational identities. In ICALP,
pages 60–73, 1990. doi:10.1007/BFb0032022.

[Pal05] Ewa Palka. On finite model property of the equational the-
ory of Kleene algebras. Fundam. Informaticae, 68(3):221–
230, 2005. URL: http://content.iospress.com/articles/

fundamenta-informaticae/fi68-3-02.

[Sal66] Arto Salomaa. Two complete axiom systems for the algebra of regular
events. J. ACM, 13(1):158–169, 1966. doi:10.1145/321312.321326.

9

https://doi.org/10.1007/11780274_20
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1007/3-540-44693-1_3
https://doi.org/10.1007/3-540-44693-1_3
https://doi.org/10.1007/BFb0032022
http://content.iospress.com/articles/fundamenta-informaticae/fi68-3-02
http://content.iospress.com/articles/fundamenta-informaticae/fi68-3-02
https://doi.org/10.1145/321312.321326

	Today's lecture
	Matrices and bisimulations
	The round-trip theorem
	Solutions to powerset automata
	Completeness
	Homework
	Bibliographical notes

