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1 Today’s lecture

In the previous lecture, we saw that a rational expression e can be converted
into a finite automaton that accepts JeKE. In this lecture, we will argue the the
opposite: given an automaton, it is possible to come up with an expression that
recognizes the same langauge. The resulting two-way correspondence between
rational expressions and finite automata is known as Kleene’s theorem, and it
is a celebrated and central result in theoretical computer science.

Kleene’s theorem will also give us some very useful tools, which we will
discuss towards the end of this lecture. These tools will form the formal basis of
the argument for logical completeness, which will will discuss in the last lecture.

2 Solving equations

Consider the automaton in Figure 1, and suppose you want to find an expression
e ∈ E such that JeK = L(q1). You could guess such an e, and try to prove that
it meets your expectation. But this is a risky endeavour; your guess could be
wrong, so you might be waste your time on a proof that does not go through.

Instead, let’s use our knowledge about equivalence between expressions to
synthesize the expressions we are looking for, based on the structure of the
automaton — in essence, this means that we will be solving equations using
Kleene algebra. It is useful to first widen our perspective to finding an expression
for each state in the automaton of interest. Returning to our example, this
means that we are looking for expressions e0, e1 ∈ E such that JeiK = L(qi).

What are the constraints that we need to put on these expressions? Well,
because any word starting with an a and continuing with a word from L(q1)
is a word in L(q1), we know that a · e1 ≦ e1. Similarly, b · e0 ≦ e1. What’s
more, since q1 is accepting, it must be the case that 1 ≦ e1 — the behavior that

q0 q1

a

b

a

b

Figure 1: An automaton to be converted into rational expressions.
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accepts immediately is covered by the behavior encoded in e1. If we carry out
this process for q0 too, we find the following constraints:

a · e0 ≦ e0 b · e0 ≦ e1 a · e1 ≦ e1 b · e0 ≦ e1 1 ≦ e1

Perhaps more concisely, if we use the fact that e ≦ f and g ≦ f holds if and
only if e+ g ≦ f , we can condense the above down to two constraints:

a · e0 + b · e1 ≦ e0

1 + a · e1 + b · e0 ≦ e1

Let’s see what we can derive about e0 and e1 based on the above conditions.
For one thing, we can rearrange the second constraint into (1+b·e0)+a·e1 ≦ e1;
by the fixpoint axioms, it then follows that

a∗ · (1 + b · e0) ≦ e1

Substituting the above into the first constraint will give us the following

a · e0 + b · (a∗ · (1 + b · e0)) ≦ e0

Using distributivity, associativity and commutativity, we can rearrange this into

(b · a∗) + (a+ b · a∗ · b) · e0 ≦ e0

By the fixpoint axiom, we get the following closed lower bound on e0:

(a+ b · a∗ · b)∗ · b · a∗ ≦ e0

Peering at this expression on the left, you can probably tell that it is pretty
close to the language of q0: it describes all words that start with a series of
words that are either a or bwb with w ∈ {a}∗, followed by a b, followed by a
series of a’s. Clearly, each of these words takes you from q0 to q1.

What’s more, you could make a formal argument that every word that goes
from q0 to q1 should match this expression, because any path from q0 to q1 can
be broken up into cycles that go from q0 to q0 without visiting q0 in between,
and those are labeled by either a or w ∈ Jb · a∗ · bK, followed by a phase that
goes to q1 (reading b) and then stays there (reading some number of a’s).

3 Solving automata

Let’s generalize the approach that we saw just now to work for all automata. To
this end, we need a generic method to condense constraints on the expressions
we are looking for from an automaton. The following definition fits that bill.

Definition 4.1 (Solution). Let A = ⟨Q,→, I, F ⟩ be an automaton. A solution
to A is a function s : Q → E, such that for all q ∈ Q it holds that

[q ∈ F ] +
∑
q

a−→q′

a · s(q′) ≦ s(q)

Here, we write [q ∈ F ] as a shorthand for 1 when q ∈ F , and 0 otherwise.
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Note that if you unroll the definition above to the automaton in Figure 1,
you will find that a solution is exactly a function s : Q → E such that

0 + a · s(q0) + b · s(q1) ≦ s(q0)

1 + a · s(q1) + b · s(q0) ≦ s(q1)

which matches exactly the constraints set forward in the previous section.
However, having a solution to an automaton is not enough for our purposes.

For instance, one solution to the system above would be to set s(q) = (a+ b)
∗

for all q ∈ Q. Clearly, this is an overestimation, as it includes behavior outside
of L(q0), like ϵ. The following tries to restrict our solutions to be conservative.

Definition 4.2 (Least solution). Let A be an automaton, and let s be a solution
to A. We say that s is a least solution to A when s is (pointwise) least w.r.t.
≦; i.e., for all solutions s′ to A and for all q ∈ Q it holds that s(q) ≦ s′(q).

With this idea in hand, we can now go forward and show that if we did have
a least solution, it would fit our requirement of denotationally describing the
languages of states in the automaton. This goes as follows.

Lemma 4.3. Let A = ⟨Q,→, I, F ⟩ be an automaton, and let s : Q → E be a
least solution to A. Then Js(q)K = L(q) for all q ∈ Q.

Proof. To show that for all q ∈ Q, L(q) ⊆ Js(q)K, we show that for all w ∈ Σ∗

and q ∈ Q, if w ∈ L(q) then w ∈ Js(q)K, by induction on w. In the base, where
w = ϵ, we have q ∈ Q. In that case, since s is a solution to A, we know that
1 ≦ s(q), and hence ϵ ∈ Js(q)K as well. For the inductive step, let w = aw′, and
assume the claim holds for w′. Then, since aw′ ∈ L(q), it follows that w′ ∈ L(q′)

for some q′ ∈ Q with q
a−→ q′. By induction, w′ ∈ Js(q′)K. Since s is a solution

to A, a · s(q′) ≦ s(q), and thus Ja · s(q′)K ⊆ Js(q)K, meaning w = aw′ ∈ Js(q)K.
For the converse inclusion we need a detour. First, define s′ : Q → E as:

s′(q) = [q ∈ F ] +
∑
q

a−→q′

a · s(q′)

In particular, this means that s′(q) ≦ s(q) for all q ∈ Q, because s is a solution
to A. We now claim that s′ is a solution to A, as well. To see this, note that

[q ∈ F ] +
∑
q

a−→q′

a · s′(q′) ≦ [q ∈ F ] +
∑
q

a−→q′

a · s(q′) = s′(q)

where we used that s′(q′) ≦ s(q′), as well as monotonicity of all operators w.r.t.
≦. But now, since s is the least solution to A, we have that s(q) ≦ s′(q) for all
q ∈ Q. In particular, we find for all q ∈ Q that

s(q) ≦ [q ∈ F ] +
∑
q

a−→q′

a · s(q′) (1)

We now prove that for all w ∈ Σ∗ and q ∈ Q, it holds that w ∈ Js(q)K implies
w ∈ L(q), by induction on w. In the base, where w = ϵ, note that by (1) and
soundness, it follows that q ∈ F , and hence ϵ ∈ L(q) by definition. For the
inductive step, let w = aw′ and assume the claim holds for w′. Again by (1)

and soundness, we find that w′ ∈ Js(q′)K for some q′ ∈ Q with q
a−→ q′. By

induction, w′ ∈ L(q′), and thus w = aw′ ∈ L(q). This completes the proof.
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4 Enter the matrix

At this point, we can condense an automaton to conditions on expressions that
describe the languages of its states. At least for the example we considered,
finding a solution to these conditions is possible. But does this hold in general?
It turns out the answer is yes, but we need to take another detour first.

Let’s take another look at the solution conditions solution from the example:

0 + a · s(q0) + b · s(q1) ≦ s(q0)

1 + a · s(q1) + b · s(q0) ≦ s(q1)

If you have taken a linear algebra course, you might recognize this format as
a linear system, and realize that such a system can be written more succinctly
using matrices. If you haven’t, don’t worry — we are about to go through the
definitions you need to see what is meant here.

Definition 4.4 (Vectors and matrices). Let S be a set. An S-vector (over E)
is a function v : S → E, and an S-matrix (over E) is a function M : S×S → E.

Let A = ⟨Q,F, δ⟩ be an automaton. We have already seen an example of a
vector: a solution to A is a Q-vector. As an example of a matrix, consider the
Q-matrix M where each cell is populated by transition labels from q to q′:

MA(q, q
′) =

∑
q

a−→q′

a

Traditionally, we write a vector as a column, and a matrix as a square, with
the contents laid out in some fixed order that is clear from our choice of S. For
instance, if Q = {q0, q1} as in the example, we can represent the Q-vector s
where s(q0) = e0 and s(q1) = e1, as well as the matrix MA defined above, by

s =

[
e0
e1

]
MA =

[
a b

b a

]
We can define addition of S-vectors, and multiplication of an S-matrix by

an S-vector, in a manner analogous to the same definitions in linear algebra.

Definition 4.5 (Operations and equivalence on vectors and matrices). Let S
be a set, let s, t be S-vectors, and let M,N be S-matrices. We write s+ t and
M +N for the pointwise addition of vectors, respectively matrices, as follows:

(s+ t)(x) = s(x) + t(x) (M +N)(x, y) = M(x, y) +N(x, y)

Furthermore, we write M ·s and M ·N for the vector, respectively matrix, where

(M · s)(x) =
∑
y∈S

M(x, y) · s(y) (M ·N)(x, y) =
∑
z∈S

M(x, z) ·N(z, y)

Lastly, we extend equivalence in a pointwise manner, writing s ≡ t when s(x) ≡
t(x) for all x ∈ S, and M ≡ N when M(x, y) ≡ N(x, y) for all x, y ∈ S. Just
like before, we write s ≦ t when s+ t ≡ t, and M ≦ N when M +N ≡ N .
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If we represent vectors as columns and matrices as tables, then matrix-vector
multiplication works by taking each row of the matrix, and multiplying the i-th
element of that row with the i-th element of the vector, summing them all up
to get the i-th element of the resulting vector. For instance,[

a b

b a

]
·
[

e0
e1

]
=

[
a · e0 + b · e1
b · e0 + a · e1

]
We can now encode the two constraints that we derived from the example au-
tomaton into one equivalence of vectors, as follows:[

0
1

]
+

[
a b

b a

]
·
[

e0
e1

]
=

[
0 + a · e0 + b · e1
1 + b · e1 + b · e0

]
≦

[
e0
e1

]
More generally, we can encode the constraints derived from an automaton into
one equivalence of vectors, as witnessed by the following lemma.

Lemma 4.6 (Solutions to automata, matrix-style). Let A = ⟨Q,→, I, F ⟩ be an
automaton, and let MA respectively bA be a Q-matrix and Q-vector, given by

MA(q, q
′) =

∑
q

a−→q′

a bA(q) = [q ∈ F ]

Let s be a solution to A, and suppose t be a least Q-vector (w.r.t. ≦) such that
bA +MA · t ≦ t. Then s and t are the same, up to ≡ — in other words, s ≡ t.

Proof. Suppose s is a solution to A (not necessarily the least one). We can
directly compute (bA +MA · s)(q), to find that

(bA +MA · s)(q) = bA(q) +
∑
q′∈Q

MA(q, q
′) · s(q′) (def. matrix operations)

= [q ∈ F ] +
∑
q′∈Q

( ∑
q

a−→q′

a
)
· s(q′) (def. bA and MA)

≡ [q ∈ F ] +
∑
q

a−→q′

a · s(q′) (distributivity)

≦ s(q) (s is a solution to A)

hence bA +MA · s ≦ s. Since t is the least such vector, we have that t ≦ s.
For the other direction, suppose t is such that bA + MA · t ≦ t. We claim

that t is a solution to A, as witnessed by the following derivation:

[q ∈ F ] +
∑
q

a−→q′

a · s(q′) ≡ [q ∈ F ] +
∑
q′∈Q

( ∑
q

a−→q′

a
)
· s(q′) (distributivity)

= bA(q) +
∑
q′∈Q

MA(q, q
′) · s(q′) (def. bA and MA)

= (bA +MA · s)(q) (def. matrix operations)

≦ s(q) (premise)

Since s is the least solution, it follows that s ≦ t.
These arguments apply to the least solution, in particular and the least

Q-vector t such that bA+MA · t ≦ t. Hence s ≦ t and t ≦ s, meaning s ≡ t.
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So, what do we gain from this characterization? Well, it turns out that we
can compute exactly such a Q-vector. For the sake of later discussion, it is
convenient to prove something even more general. First, some notation.

Definition 4.7 (Scalar multiplication). Let S be a set and let s be an S-vector.
Furthermore, let e ∈ E. We write s#e for the S-vector given by (s#e)(x) = s(x)·e.

Lemma 4.8. Let Q be a finite set, with M a Q-matrix and b a Q-vector. We
can construct a Q-vector s, such that b + M · s ≦ s, and furthermore if t is a
Q-vector and z ∈ E with b # z +M · t ≦ t, then s # z ≦ t.

Proof. To get an idea, let’s look at the special case where Q is a singleton set.
Here, M and b contain just one expression, and vector addition and multiplica-
tion comes down to adding and multiplying that expression. Thus, we are really
looking s ∈ E where b+M · s ≦ s, and if t ∈ E such that b · z ≦ M · t, then s · z.
But we already know exactly such an expression: it’s M∗ · b. After all,

b+M ·M∗ · b ≡ (1+M ·M∗) · b ≡ M∗ · b b · z+M · t ≦ t =⇒ M∗ · b · z ≦ t

Our job is to generalize this approach to sets Q that contain more elements. To
this end, we proceed by induction on (the size of) Q.

In the base, where Q = ∅, we can simply choose s to be the unique Q-vector
s : ∅ → E, which satisfies both conditions vacuously. For the inductive step, let
p ∈ Q be our pivot, and choose Q′ = Q\{p}. We are going to create a Q′-vector
and Q′-matrix, and then use the induction hypothesis to obtain a Q′-vector;
next, we will extend this Q′-vector into a Q-vector satisfying our objectives.

Let M ′ and b′ respectively be the Q′-matrix and Q′-vector given by

M ′(q, q′) = M(q, q′) +M(q, p) ·M(p, p)
∗ ·M(p, q′)

b′(q) = b(q) +M(q, p) ·M(p, p)
∗ · b(p)

Now, by induction we obtain an Q′-vector s′ such that b′ + M ′ · s′ ≦ s′, and
moreover if t′ is a Q′-vector such that b′ +M ′ · t′ ≦ t′, then s′ ≦ t′.

We extend s to a Q-vector as follows:

s(q) =

{
s′(q) q ∈ Q′

M(p, p)
∗ ·

(
b(p) +

∑
q′∈Q′ M(p, q′) · s′(q′)

)
q = p

We now claim that s satisfies the two constraints in our goal.

• To see that b+M · s ≦ s, let q ∈ Q. First, we derive as follows.

(b+M · s)(q) = b(q) +
∑
q′∈Q

M(q, q′) · s(q′)

≡ b(q) +M(q, p) · s(p) +
∑
q′∈Q′

M(q, q′) · s(q′)

≡ b(q) +M(q, p) ·M(p, p)
∗ ·

(
b(p) +

∑
q′∈Q′

M(p, q′) · s′(q′)
)

+
∑
q′∈Q′

M(q, q′) · s(q′) (†)

We consider two cases, based on q.
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– If q ∈ Q′, then (†) can be rearranged into

b(q) +M(q, p) ·M(p, p)
∗ · b(p)

+M(q, p) ·M(p, p)
∗ ·

∑
q′∈Q′

M(p, q′) · s′(q′)

+
∑
q′∈Q′

M(q, q′) · s′(q′)

≡ b(q) +M(q, p) ·M(p, p)
∗ · b(p) +

∑
q′∈Q′

M ′(q, q′) · s′(q′)

≡ b′(q) +
∑
q′∈Q′

M ′(q, q′) · s′(q′)

= (b′ +M ′ · s′)(q) ≦ s′(q) = s(q)

where we use the fact that b′ +M ′ · s′ ≦ s′.

– Otherwise, q = p, then (†) is the expression below, whence

b(p) +M(p, p) ·M(p, p)
∗ ·

(
b(p) +

∑
q′∈Q′

M(p, q′) · s′(q′)
)

+
∑
q′∈Q′

M(p, q′) · s(q′)

≡ (1 +M(p, p) ·M(p, p)
∗
) ·

(
b(p) +

∑
q′∈Q′

M(p, q′) · s′(q′)
)

≡ M(p, p)
∗ ·

(
b(p) +

∑
q′∈Q′

M(p, q′) · s′(q′)
)

= s(q)

In both cases, we find that (b+M · s)(q) ≦ s(q).

• Suppose that t is a Q-vector such that b # z+M · t ≦ t. In particular, note
that this implies that we have

b(p) · z +M(p, p) · t(p) +
∑
q′∈Q′

M(p, q′) · t(q′)

≡ b(p) · z +
∑
q′∈Q

M(p, q′) · s(q′) ≦ t(p)

By the fixpoint axiom, it then follows that

M(p, p)
∗ ·

(
b(p) · z +

∑
q′∈Q′

M(p, q′) · t(q′)
)
≦ t(p) (2)

We are going to use the induction hypothesis yet again: choose the Q′-
vector t′ where t′(q) = t(q). By induction, we have that if b′ #z+M ′ ·t′ ≦ t′,
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then s′ #z ≦ t′. To discharge this premise, let q ∈ Q′ and derive as follows:

(b′ # z +M ′ · t′)(q)

= b′(q) · z +
∑
q′∈Q′

M ′(q, q′) · t′(q′)

≡ b(q) · z +M(q, p) ·M(p, p)
∗ · b(p) · z

+
∑
q′∈Q′

(M(q, q′) +M(q, p) ·M(p, p)
∗ ·M(p, q′)) · t′(q′)

≡ b(q) · z +M(q, p) ·M(p, p)
∗ ·

(
b(p) · z +

∑
q′∈Q′

M(p, q′) · t′(q′)
)

+
∑
q′∈Q′

M(q, q′) · t(q′)

≦ b(q) · z +M(q, p) · t(p) +
∑
q′∈Q′

M(q, q′) · t(q′) (by (2))

≡ b(q) · z +
∑
q′∈Q

M(q, q′) · t(q′) ≦ t(q)

Thus, we have for q ∈ Q′ that (s #z)(q) = (s′ #z)(q) ≦ t′(q) = t(q). Finally,
to show that (s # z)(p) ≦ t(p), we derive that

s(p) · z ≡ M(p, p)
∗ ·

(
b(p) +

∑
q′∈Q′

M(p, q′) · s′(q′)
)
· z

≡ M(p, p)
∗ ·

(
b(p) · z +

∑
q′∈Q′

M(p, q′) · s′(q′) · z
)

≦ M(p, p)
∗ ·

(
b(p) · z +

∑
q′∈Q′

M(p, q′) · t′(q′)
)

≦ t(p) (by (2))

This completes the proof.

We have achieved our goal: by Lemma 4.8, we can find a vector which, by
Lemma 4.6, is a solution to our automaton, and by Lemma 4.3, this vector
contains the expressions we are looking for. We can wrap this up as follows.

Theorem 4.9 (Automata to expressions). Let ⟨Q,F, δ⟩ be an automaton. For
each q ∈ Q, we can construct an expression eq such that JeqK = L(q).

5 Kleene algebra for matrices

It is not too hard to show that addition and multiplication of matrices satisfy
the axioms that we have become used to for rational expressions.

Lemma 4.10 (Semiring laws for matrices). Let Q be a finite set, and let X, Y
and Z be Q-matrices. Let’s write 1 for the identity Q-matrix, where 1(q, q′) =
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[q = q′], and 0 for the null Q-matrix, where 0(q, q′) = 0. The following hold:

X + 0 ≡ X X +X ≡ X X + Y ≡ Y +X

X + (Y + Z) ≡ (X + Y ) + Z X · (Y · Z) ≡ (X · Y ) · Z

X · (Y + Z) ≡ X · Y +X · Z (X + Y ) · Z ≡ X · Z + Y · Z

X · 1 ≡ X ≡ X · 1 X · 0 ≡ 0 ≡ 0 ·X

Proof. Each law can be proved by unfolding the definitions of the operators,
and applying on the corresponding law on the level of rational expressions.

These laws are very nifty, but perhaps not entirely satisfactory — we are
missing the laws about the star. Of course, to state those laws at all, we first
need to define what it means to take the star of a matrix. To this end, let’s
reconsider Lemma 4.8. If you zoom in on the constraint b + M · s ≦ s, then
you might realise that it looks quite familiar to the premise of the left-fixpoint
axiom! In fact, if we imagine for a second that b, M and s are all rational
expressions, then we could take the “star” of M to find that s = M∗ · b fits the
constraints on s in Lemma 4.8! After all, by the fixpoint axioms:

b+M ·M∗ · b ≡ (1+M ·M∗) · b ≡ M∗ · b b · z+M · t ≦ t =⇒ M∗ · b · z ≦ t

This tells us that perhaps we can use Lemma 4.8 to compute the star of a
matrix. The proof of the following lemma spells this out in detail.

Lemma 4.11 (Star of a matrix). Let Q be a finite set, and let M be a Q-matrix.
We can construct a matrix M∗ such that the following hold:

(i) if s and b are Q-vectors such that b+M · s ≦ s, then M∗ · b ≦ s; and

(ii) 1+M ·M∗ ≡ M∗, where 1 is the Q-matrix given by 1(q, q′) = [q = q′].

Proof. For each q ∈ Q, we write uq for the Q-vector where uq(q
′) = [q = q′].

Furthermore, we write sq for the least Q-vector such that uq +M · sq ≦ sq; note
that we can construct this Q-vector, per Lemma 4.8.

We now choose the Q-matrix M∗ as follows:

M∗(q, q′) = sq′(q)

It remains to show that M∗ satisfies the two requirements above.

(i) Suppose that s and b are Q-vectors such that b+M · s ≦ s. We then need
to show that M∗ · b ≦ s, or, in other words, show that for all q ∈ Q:∑

q′∈Q

M∗(q, q′) · b(q′) ≦ s(q)

It thus suffices to show that, for all q, q′ ∈ Q, we have sq′(q) · b(q′) ≦ s(q),
or, in other words, that sq′ # b(q′) ≦ s. By construction of sq′ , it then
suffices to show that uq′ # b(q′) +M · s ≦ s. To this end, we derive:

(uq′ # b(q′) +M · s)(q) ≦ (b+M · s)(q) ≦ s(q)

which completes this part of the proof.
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(ii) For the second part of the claim, let q, q′ ∈ Q; we derive as follows:

(1+M ·M∗)(q, q′) ≡ 1(q, q′) +
∑
q′′∈Q

M(q, q′′) ·M∗(q′′, q′) (by def.)

≡ uq′(q) +
∑
q′′∈Q

M(q, q′′) · sq′(q′′) (def. uq′ ,M
∗)

≡ (uq′ +M · sq′)(q) (by def.)

≡ sq′(q) (see below)

≡ M∗(q, q′) (def. M∗)

where the second to last equivalence follows from the fact that

uq′ +M · (uq′ +M · sq′) ≦ uq′ +M · sq′

and hence uq′ +M · sq′ ≦ sq′ , meaning that uq′ +M · sq′ ≡ sq′ .

The star of a matrix satisfies the least fixpoint axiom for matrices, as well.

Corollary 4.12. Let Q be a finite set, and let M and B be Q-matrices. If S is
a Q-matrix such that B +M · S ≦ S, then M∗ ·B ≦ S.

Proof. For q ∈ Q, let’s define the Q-vectors sq and bq by setting sq(q
′) = S(q′, q)

and bq(q
′) = B(q′, q). We claim that, for all q ∈ Q, we have bq +M · sq ≦ sq.

To see this, we derive as follows:

(bq +M · sq)(q′) = bq(q
′) +

∑
q′′∈Q

M(q′, q′′) · sq(q′′)

≡ B(q, q′) +
∑
q′′∈Q

M(q′, q′′) · S(q′′, q)

= (B +M · S)(q′, q)
≦ S(q′, q) = sq(q

′)

Now, by Lemma 4.11, we know that M∗ · bq ≦ sq, and we can derive

(M∗ ·B)(q, q′) =
∑
q′′∈Q

M∗(q, q′′) ·B(q′′, q′)

=
∑
q′′∈Q

M∗(q, q′′) · bq′(q′′)

= (M∗ · bq′)(q)
≦ sq′(q) = S(q, q′)

This completes the proof.

6 Dualization

We just showed that the left-fixpoint axiom has an analogue on the level of ma-
trices. However, we also have a right-fixpoint axiom on the level of expressions:

1 + e∗ · e ≡ e e+ f · g ≦ f =⇒ g · e∗ ≦ f

10



The question then arises: can we recover analogous properties of the star of
a matrix? One way to tackle this question is to realize that we can mirror
Lemma 4.11 and corollary 4.12 and their proofs to obtain the following.

Lemma 4.13 (Dagger of a matrix). Let Q be a finite set, and let M be a
Q-matrix. We can construct a matrix M† such that the following hold:

(i) if s and b are Q-vectors such that b+ s ·M ≦ s, then b ·M† ≦ s; and

(ii) 1+M† ·M ≡ M†, where 1 is the Q-matrix given by 1(q, q′) = [q = q′].

Corollary 4.14. Let Q be a finite set, and let M and B be Q-matrices. If S is
a Q-matrix such that B + S ·M ≦ S, then B ·M† ≦ S.

As it turns out, the dagger and the star of a matrix are equivalent.

Lemma 4.15. Let Q be a finite set, and let M be a Q-matrix. Now M∗ ≡ M†.

Proof. To prove that M∗ ≦ M†, it suffices to prove that M∗ · 1 ≦ M†, where
1 is the identity Q-matrix. By Corollary 4.12, this holds if we can show that
1 ≦ M† and M ·M† ≦ M†. The former follows immediately from the fact that
1+M† ·M ≡ M†. As for the latter, by Corollary 4.14, it suffices to show that
M +M† ·M ≦ M†, or equivalently M ≦ M† and M† ·M ≦ M†. The former
again follows from the fact that 1+M† ·M ≡ M†. As for M ≦ M†, this follows
from M ≦ 1 ·M ≦ M† ·M ≦ 1+M† ·M ≡ M†.

The proof that M† ≦ M∗ is analogous.

This means that we can wrap up our consideration of the star-operation on
matrices by stating the desired properties, as follows.

Theorem 4.16. The addition, multiplication and star operations on matrices
satisfy all of the laws of Kleene algebra. In particular, in addition to the laws
listed in Lemma 4.10, if X, Y and Z are Q-matrices for some finite set Q, then

1+X ·X∗ ≡ X∗ X + Y · Z ≦ Z =⇒ Y ∗ · Z ≦ Z

1+X∗ ·X ≡ X∗ X + Y · Z ≦ Y =⇒ X · Z∗ ≦ Y

7 Homework

1. Consider the following automaton:

q0 q1

b

a

a

b

(a) Suppose e0 and e1 are such that Je0K = L(q0), and Je1K = L(q1).
Derive the two constraints on e0 and e1, just like we did for the ex-
pressions that described the languages of the automaton in Figure 1.

(b) Write the constraints that you derived in the previous exercise as one
constraint, involving two vectors and one matrix.

11



(c) Find lower bounds on the expressions e0 and e1 satisfying either the
pair of constraints from 1a, or equivalently the constraint from 1b.

You may use the systematic method from the proof of Lemma 4.8,
or the more ad hoc method from Section 2, whichever you prefer.

2. Let Q be a finite set. When M is an Q-matrix and b is an Q-vector, we
write solveM (b) for the Q-vector such that for all z ∈ E and Q-vectors t:

b+M · solveM (b) ≦ solveM (b) b # z +M · t ≦ t =⇒ solveM (b) # z ≦ t

Note that such a vector exists, and can be computed, per Lemma 4.8.

In this exercise, we are going to prove that solveM is linear, in the sense
that you may know from linear algebra. Don’t worry if you do not know
exactly what that means, because we will spell it out.

(a) Let z ∈ E. Show that b # z +M · (solveM (b) # z) ≦ solveM (b) # z.
Conclude from this, using the properties of solveM , that

solveM (b # z) ≡ solveM (b) # z

Hint: for the second part, use that if e ≦ f ≦ e, then e ≡ f .

(b) Let b1 and b2 be Q-vectors. Prove the following:

i. solveM (b1 + b2) ≦ solveM (b1) + solveM (b2)

ii. solveM (b1) + solveM (b2) ≦ solveM (b1 + b2)

Conclude that solveM (b1 + b2) ≡ solveM (b1) + solveM (b2).

3. Let Q be a finite set, and let X, Y and Z be Q-matrices. Prove the
left-distributivity claimed in Lemma 4.10, namely that

X · (Y + Z) ≡ X · Y +X · Z

4. Let Q0 and Q1 be finite sets, let M be a Q0-by-Q1 matrix, let X be a
Q1-matrix, and let Y be a Q0-matrix.

Show that M ·X ≦ Y ·M implies M ·X∗ ≦ Y ∗ ·M .

We have not proved that the laws of KA apply to non-square matrices.
For this exercise, however, you may assume that this is the case.

Hint: if you’re stuck, suppose e, f, g ∈ E with e · f ≦ g · e, and prove that
e · f∗ ≦ g∗ · e. The structure of this proof can be adapted to your needs.

8 Bibliographical notes

The intuition behind the construction of Lemma 4.8 go back to [Kle56]. The
perspective of using matrices over something close to rational terms can be
traced back to Conway’s monograph [Con71] and Backhouse [Bac75]. Also
related is Kozen’s treatment of matrices over rational terms [Koz96].
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