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1 Today’s lecture

If you want to check whether two rational expressions have the same semantics,
you can try proving them equivalent using the laws of Kleene algebra. As
we have seen, however, you may get stuck for one of two reasons: either you
are trying to prove an equivalence that does not follow from the axioms (but
may still be true), or the equivalence you are trying to prove is false. In this
lecture, we will see a particular method to algorithmically check, given rational
expressions e, f ∈ E, whether JeKE = JfKE. Importantly, the algorithm that we
will develop will be able to give you a definitive answer to this question; this
means that you will be able to eliminate the second possibility.

The methodology that we will employ is commonplace throughout computer
science, and so it is good to lay out explicitly. First, we will introduce automata
as a finite way to represent a language. Next, we will study a structural property
of automata that characterizes language equivalence. Finally, we will develop a
construction that turns an expression e into an automaton that represents JeKE.
In total, this will give us a recipe for checking whether JeKE = JfKE: simply
convert both e and f into automata, and check those for language equivalence.

2 Finite Automata

Informally, an automaton is a “machine” that can be in one of several states.
At each of those states, the automaton can read a letter from the input buffer,
which then uniquely determines its next state. When there is no input left, the
input is accepted if the state is accepting, and rejected otherwise. The set of
words accepted when starting from a designated initial state, is the language of
that state. We can formalize these ideas more precisely, as follows.

Definition 3.1. An automaton is a tuple A = ⟨Q,→, I, F ⟩, where

• Q is a set of states; and

• → ⊆ Q× Σ×Q is the transition relation; and

• I, F ⊆ Q are the initial and accepting states respectively

We use q
a−→ q′ to denote that ⟨q, a, q′⟩ ∈ →. Now, the language of q in A,

denoted LA(q), is the smallest set satisfying the following rules

q ∈ F

ϵ ∈ LA(q)

w ∈ LA(q
′) q

a−→ q′

aw ∈ LA(q)
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Figure 1: Graphical depictions of a deterministic automaton (on the left), and
a non-deterministic automaton (on the right).

When the automaton is clear from context, we will drop the subscript. The
language of A, denoted L(A), is the union of LA(q) for all q ∈ I.

An automaton is finite when it has finitely many states, and deterministic
when (1) I is a singleton set, and (2) for each q ∈ Q and a ∈ Σ, there is exactly

one q′ ∈ Q such that q
a−→ q′. For deterministic automata, we may also write qI

for the sole initial state, and (q)a for the unique state such that q
a−→ (q)a.

Sometimes is easier to draw an automaton to define it. In that case, we
draw a circle or rrectanglefor every state (labelled with some name), and edges
between states to signify the transition function. Accepting states have their
contours doubled. For example, the automaton drawn in Figure 1 on the left
has three states: q0, q1, and q2, with q2 the sole accepting state. Its transition
relation can be read from the edges; for instance, q1

a−→ q2. Initial states are
indicated by an arrow without a source node, as is done for q1 in the example.
This automaton is also deterministic: there is exactly one initial state, and for
every state and letter a, there is precisely one a-successor state reached through
the transition relation. In contrast, the automaton drawn in Figure 1 on the
right is non-deterministic: there are two states reachable from p0 by a (p0 itself
and p1); also, there are no states reachable from p2 by reading a or b.

You can get an idea of L(q1) by looking at the picture: it’s the set of all
words that can be “read” along the (possibly looping) paths from q1 to q2. For
instance, b, baabb ∈ L(q1). In general, it looks like the language of q1 contains
words where a can occur only between strictly odd and even appearances of b.

3 Bisimulation

So, when do two states in two automata (or even the same automaton) accept the
same language? This is not immediately obvious; there can be many automata
that accept the same language, and their structures can vary a lot: consider
for instance the automata in Figure 2, which accept the same language but are
quite different structurally. That is where (bi)simulations come in.

Definition 3.2. Let Ai = ⟨Qi,→i, Ii, Fi⟩ be an automaton for i ∈ {1, 2}. A
simulation of A1 by A2 is a relation R ⊆ Q1 ×Q2, s.t. for all q1 R q2:

1. if q1 ∈ F1, then q2 ∈ F2; and

2. if q1
a−→1 q′1, then there exists a q′2 ∈ Q2 such that q2

a−→2 q′2 and q′1 R q′2.

Moreover, a bisimulation between A1 and A2 is a simulation of A1 by A2 such
that its converse (i.e., the relation Rc = {⟨q2, q1⟩ ∈ Q2 ×Q1 : ⟨q1, q2⟩ ∈ R}) is a
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Figure 2: Two more automata.

simulation of A2 by A1. A state q1 ∈ Q1 is (bi)similar to a state q2 ∈ Q2 when
there exists a (bi)simulation that relates them.

You may have encountered the idea of a bisimulation in different courses
as well. The idea is that bisimilar states are “indistinguishable” in terms of
their dynamics. The same can be said for the definition above, where bisimilar
states are equally accepting, and this property is invariant with respect to taking
transitions. As it turns out, bisimilarity and language equivalence are related.

Lemma 3.3. Let Ai = ⟨Qi,→i, Ii, Fi⟩ be an automaton for i ∈ {1, 2}, with
q1 ∈ Q1 and q2 ∈ Q2. The following properties hold:

1. If q1 is similar to q2, then L(q1) ⊆ L(q2).

2. If L(q1) ⊆ L(q2), and the Ai are deterministic, then q1 is similar to q2.

Proof. For the first property, let R be a bisimulation with q1 R q2. We show,
by induction on w ∈ Σ∗, that w ∈ L(q′1) if and only if w ∈ L(q′2), for all q

′
1 R q′2.

In the base, w = ϵ. Now, if ϵ ∈ L(q′1), then surely q′1 ∈ F . Since q′1 R q′2, it
follows that q′2 ∈ F , meaning ϵ ∈ L(q′2). The converse follows analogously. For

the inductive step, let w = aw′ with a ∈ Σ such that w′ ∈ L(q′′1 ) and q′1
a−→ q′′1 .

Because q′1 R q′2 there exists a q′′2 ∈ Q2 such that q′2
a−→ q′′2 and q′′1 R q′′2 . By

induction, we know that w′ ∈ L(q′′2 ), and thus that w = aw′ ∈ L(q′2).
For the forward implication, we choose R = {⟨q′1, q′2⟩ ∈ Q1 ×Q2 : LA1(q

′
1) =

LA2(q
′
2)}. Clearly, q1 R q2. We now claim that R is a bisimulation; to this

end, suppose q′1 R q′2. For the first condition, note that q′1 ∈ F if and only if
ϵ ∈ L(q′1) = L(q′2), which holds precisely when q′2 ∈ F . For the second condition,

we should show that if q′1
a−→ q′′1 , then there exists a q′′2 ∈ Q2 such that q′2

a−→ q′′2
and q′′1 R q′′2 , i.e., LA1(q

′′
1 ) ⊆ LA2(q

′′
2 ). Because A1 and A2 are deterministic, we

know that in this case q′′1 = (q1)a, and we can choose q′′2 = (q′2)a. It remains to
show that LA1

((q′1)a) ⊆ LA2
((q′2)a). To this end, let w ∈ LA1

((q′1)a). Then we
have that aw ∈ LA1

(q′1), by definition, and thus aw ∈ LA2
(q′2). But this can

only be the case when w ∈ LA2
((q′2)a), and so we are done.

Corollary 3.4. Let Ai = ⟨Qi,→i, Ii, Fi⟩ be an automaton for i ∈ {1, 2}, with
q1 ∈ Q1 and q2 ∈ Q2. The following properties hold:

1. If q1 is bisimilar to q2, then L(q1) = L(q2).

2. If L(q1) = L(q2), and the Ai are deterministic, then q1 is bisimilar to q2.

3



q0

q1

q2 q3

a

b c

p0

p1 p2

p3 p4

a a

b c

Figure 3: Language equivalence does not imply (bi)similarity in general.

This tells us that, for deterministic automata, bisimilarity and language
equivalence coincide — if we can decide one, we can decide the other. Indeed,
this dependence on determinism is necessary for the second part of Lemma 3.3
and corollary 3.4: there exist non-deterministic automata with states that have
the same language, but are not bisimilar. A classic example of this is given by
the automata in Figure 3: here, q0 in the automaton on the left has the same
language as p0 in the automaton on the right, but q0 is not similar to p0, as the
former can take an a-step to q1, which has both a b-step and a c-step available,
while p0 cannot make a transition to a state that can offer both options.

4 Finding bisimulations

Let’s see how we could try to find a bisimulation manually.1 first, before giving
the general algorithm. Consider the deterministic automata in Figure 2. Sup-
pose we wanted to show that q1 is language equivalent to p3; to this end, we
need to demonstrate a bisimulation R such that q1 R p3. Let’s (naively) try
R = {⟨q1, p3⟩}. This relation satisfies the first requirement, but not the second
one, which says that (q1)a R (p3)a and (q1)b R (p3)b should hold. However, we
can remedy this by updating our guess to R = {⟨q1, p3⟩, ⟨q2, p3⟩, ⟨q3, p1⟩}. This
candidate still satisfies the first requirement, but is not quite a bisimulation,
since (q3)a ̸R (p1)a. We can remedy this by adding ⟨q3, p2⟩, obtaining

R = {⟨q1, p3⟩, ⟨q2, p3⟩, ⟨q3, p1⟩, ⟨q3, p2⟩}

This final choice of R is a bisimulation, thus witnessing that L(q1) = L(p3).
For a negative example, suppose you wanted to check whether q1 is language

equivalent to p1. We would then need to construct a bisimulation R such that
q1 R p1. Clearly, if such a bisimulation exists, it would violate the first require-
ment, since p1 is accepting while q1 is not. It follows that such a bisimulation
cannot exist, and hence q1 does not accept the same language as p1.

To fully automate the search for a bisimulation, you can use Algorithm 1.
This procedure maintains two sets: R contains the pairs that are part of our
bisimulation, while T contains a “todo list” of pairs that are yet to be added. In

1I pulled this example from Jurriaan Rot’s lecture notes on coalgebra, available online here:
http://cs.ru.nl/~jrot/coalg18/coalg-lect6.pdf
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each iteration, the algorithm removes a pair from T , checks if it is not already in
R, and if the elements of the pair agree on acceptance. If both checks succeed,
the pair is added to R, and its successors are added to T , to be checked later.
Otherwise, if the elements of the pair do not agree on acceptance, we have
reached a contradiction: the bisimulation we are looking for cannot exist; the
algorithm then returns false. Finally, when T is empty, there are no more pairs
to consider. In that case, R is a bisimulation, and the algorithm returns true.

Data: det. automata ⟨Qi,→i, Ii, Fi⟩ and states qi ∈ Qi, for i ∈ {1, 2}.
Result: true if q1 is bisimilar to q2, false otherwise.
R← ∅; T ← {⟨q1, q2⟩};
while T ̸= ∅ do

pop ⟨q′1, q′2⟩ from T ;
if ⟨q′1, q′2⟩ ̸∈ R then

if q′1 ∈ F1 ⇐⇒ q′2 ∈ F2 then

add ⟨q′1, q′2⟩ to R;
add ⟨(q′1)a, (q′2)a⟩ to T for all a ∈ Σ;

else

return false;

return true;
Algorithm 1: Bisimulation search.

Algorithm 1 is correct, for finite automata. The proof is not the focus of this
lecture; instead, it will be part of today’s homework as an optional exercise.

5 The powerset construction

Getting back to the bigger picture for a moment, recall that we started out
wanting to decide whether two expressions have the same language, and we
want to do this by deciding whether two automata have the same language. This
raises two questions. First, how do we even decide bisimilarity? Second, what if
our automata are not deterministic? We will provide a fairly simple algorithm
for the first question in the next lecture; for now, we focus on determinism.

The added value of determinism is that, given a state in an automaton and
an input letter, you always only have one choice for the next state. We will
now see that it is possible to convert a general automaton into a deterministic
one accepting the same language; the key insight is that the automaton we will
produce always takes all possible successors; as a result, the states of the new
automaton will represent sets of the states of the old automaton.

Definition 3.5. Let A = ⟨Q,→, I, F ⟩ be an automaton. The powerset automa-
ton of A is the deterministic automaton ⟨2Q,→′, {I}, F ′⟩, where F ′ = {S ⊆ Q :
S ∩ F ̸= ∅} and →′ is the smallest relation where for all S ⊆ Q, we have

S
a−→

′
{q′ ∈ Q : ∃q ∈ S. q

a−→ q′}

As an example of the powerset construction, consider the automaton on the
right in Figure 1. Its powerset automaton is drawn in Figure 4; to reduce visual
clutter, we have dropped the set braces from the annotation of each state. In
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Figure 4: The powerset automaton of the automaton in Figure 1 on the right.

this automaton, instead of having two outgoing a-transitions from p0 to p0 and
p1, we now have a single a-transition from {p0} to the composite state {p0, p1}.
This state, in turn, has a single a-transition to {p0, p1, p2}, because p0 has a
a-transition to p0 and p1, while p1 has a a-transition to p2.

Remark 3.6. Although the four states on the right are not reachable from the
initial state {p0}, it is worth pointing out that every automaton obtained by
the powerset construction will have a state ∅ (on the bottom right in Figure 4),
which is non-accepting and transitions only to itself.

We are now in a position to prove that the powerset automaton of A accepts
the very same language as A itself, by relating the language of a state in the
powerset automaton to the languages of its constituent states in A, as follows.

Lemma 3.7. Let A = ⟨Q,→, I, F ⟩ be an automaton, and A′ = ⟨2Q,→′, {I}, F ′⟩
its powerset automaton. For all S ⊆ Q we have LA′(S) =

⋃
q∈S LA(q). In

particular, for all q ∈ Q we have that LA′({q}) = LA(q), and L(A′) = L(A).

Proof. We prove that for all w ∈ Σ∗ that if S ⊆ Q, then w ∈ LA′(S) if and
only if w ∈ LA(q) for some q ∈ S; the first claim then follows. To this end, we
proceed by induction on w. In the base, where w = ϵ, we have that w ∈ LA′(S)
if and only if S ∈ F ′, i.e., if and only if S ∩ F ̸= ∅, which is equivalent to the
existence of some q ∈ S ∩ F , or in other words q ∈ S such that w = ϵ ∈ LA(q).

For the inductive step, let w = aw′ for some a ∈ Σ and w′ ∈ Σ∗. Now
w ∈ LA′(S) if and only w′ ∈ LA′(S′), where S′ = {q′ ∈ Q : ∃q ∈ S. q

a−→ q′}.
By induction, the latter is equivalent to the existence of a q′ ∈ S′ such that
w ∈ LA(q

′); since q′ ∈ S′, this holds precisely when there exist q ∈ S and q′ ∈ Q

with q
a−→ q′ and w′ ∈ LA(q

′), i.e., when there exists a q ∈ S with w ∈ LA(q).
The second claim follows immediately; as for the last claim, we note that

L(A′) =
⋃
S∈I′

LA′(S) = LA′(I) =
⋃
q∈I

LA(q) = L(A)

As a consequence of the above, we have a way to compare the languages of
two (not necessarily deterministic) automata: simply apply the powerset con-
struction, and verify that the resulting (deterministic) automata have bisimilar
initial states. In general, the powerset construction does give us an exponential
blowup in the number of states, but that is the cost of doing business.
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Figure 5: An automaton for the expression a · b∗.

6 Antimirov’s construction

By now, we know that if we want to compare two automata for language equiva-
lence, we can try and establish a bisimulation between their powerset automata.
However, we wanted to figure out if two expressions denote the same language.
This means that we still need to figure out how to convert an expression to
an automaton that accepts the same language. There is a wide variety of such
constructions. Today, we will go over Antimirov’s construction, which is itself a
variation of an earlier construction due to Brzozowski.

The idea behind Antimirov’s construction is to create an infinite automaton,
where each state is an expression representing the language to be accepted by
that state. For example, consider a · b∗. A state recognizing this language
cannot be accepting, because ϵ ̸∈ Ja · b∗KE. On the other hand, upon reading
the letter a, the remaining words to be read before we can accept must come
from the language denoted by b∗, and so we transition to the state for that
expression. Since ϵ ∈ Jb∗KE, this state is accepting. However, since no word
in Jb∗KE begins with a a, the a-transition again leads to 0. After reading a b,
the remaining words also come from b, and so this state loops to itself. The
resulting automaton is drawn in Figure 5; the full construction, which we will
describe momentarily, will give us a very similar automaton.

First, let’s look at the expressions that are attached to accepting states.
Intuitively, these must be the expressions whose language includes the empty
word ϵ. As it turns out, we can characterise these expressions directly, as follows.

Definition 3.8. We define A as the smallest subset of E satisfying the rules

1 ∈ A
e ∈ A f ∈ E
e+ f, f + e ∈ A

e, f ∈ A
e · f ∈ A

e ∈ E
e∗ ∈ A

It is not too hard to show that A characterizes expressions whose language
contains the empty set, i.e., that for e ∈ E we have e ∈ A if and only if ϵ ∈ JeKE.
We omit this proof, and instead prove something slightly stronger in a moment.

We must also put a transition structure on our automaton. Here, the intu-
ition is that if we are in a state labelled by e and we read an a, then we should
transition to a state labelled by an expression e′ whose language includes words
w such that aw is in the language of e. Conversely, if aw is a word in the lan-
guage of e, then we should be able to make an a-transition to a state labelled
by an expression e′ such that w is in the language of e. We do this as follows.

Definition 3.9. We define →E ⊆ E× Σ× E as the smallest relation satisfying

a
a−→E 1

e
a−→E e′

e+ f
a−→E e′

f
a−→E f ′

e+ f
a−→E f ′

e
a−→E e′

e · f a−→E e′ · f
e ∈ A f

a−→E f ′

e · f a−→E f ′

e
a−→E e′

e∗
a−→E e′ · e∗
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Example 3.10. If e = a + b · a∗, then e
a−→E 1 because a

a−→E 1. Similarly,

e
b−→ 1 · a∗, because b · a∗ b−→E 1 · a∗, which in turn holds because b

b−→E 1.

Intuitively, the first rule covers reading the only word in the language of a.
The second and third rule ensure that if we can read an a from e or f , then we
can also read this a from e+ f — and hence go on to accept the words in either
e or f . The fourth rule says that if we can read an a from e to end up in e′,
then we can read a a from e · f to end up in e′ · f — intuitively, we read the
beginning of a word in the language of e, so we still need to finish that word,
and then go on to read a word in the language of f . The fifth rule takes care
of the latter: if the language of e contains the empty word, then we can start
reading a word accepted by f . The last rule says that if a is the start of a word
accepted by e, then it is also the start of a word accepted by e∗ — indeed, from
e∗ we move to e′ · e∗ because we need to finish reading the word accepted by e,
and when we are done we can choose to read another word from e∗.

At this point, we could create for every expression e an automaton like
⟨E,→E, {e},A⟩. The only problem is that this automaton is not finite, as it
contains a state for each expression. Fortunately, we can do a lot better if we
focus on a particular finite subset of E, defined as follows.

Definition 3.11. We define ρ : E→ 2E by induction, as follows.

ρ(0) = ρ(1) = ∅ ρ(a) = {1} ρ(e+ f) = ρ(e) ∪ ρ(f)

ρ(e · f) = {e′ · f : e′ ∈ ρ(e)} ∪ ρ(f) ρ(e∗) = {e′ · e∗ : e′ ∈ ρ(e)}

Intuitively, ρ(e) holds the expressions that may be reached when reading a
word starting from the expression e (but not necessarily e itself). We can show
that ρ(e) is closed under taking transitions, in the following sense.

Lemma 3.12. Let e ∈ E. The following hold:

(i) If e
a−→E e′, then e′ ∈ ρ(e).

(ii) If e′ ∈ ρ(e) and e′
a−→ e′′, then e′′ ∈ ρ(e).

Proof. We treat the claims in the order given.

(i) Suppose e
a−→E e′. We prove that e′ ∈ ρ(e) by induction on e. In the base,

where e = 0, e = 1 or e = a for some a ∈ Σ, the claim holds by definition
of →E and ρ. For the inductive step, there are three cases to consider.

• If e = e1 + e2, then e
a−→E e′ implies that either e1

a−→E e′ or e2
a−→E e′;

we assume the former w.l.o.g. By induction, e′ ∈ ρ(e1) ⊆ ρ(e).

• If e = e1 · e2, then there are two more subcases.

– If e′ = e′1 · e2 with e1
a−→E e′1, then by induction e′1 ∈ ρ(e1). This

implies that e′1 ∈ ρ(e1) by induction, and hence e′ = e′1·e2 ∈ ρ(e).

– If e′ = e′2 with e2
a−→E e′2, then by induction e′2 ∈ ρ(e2) ⊆ ρ(e).

• If e = e∗1, then e′ = e′1 · e∗1 with e1
a−→E e′1. By induction we have that

e′1 ∈ ρ(e1), and thus e′ = e′1 · e∗1 ∈ ρ(e).
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(ii) Suppose e′ ∈ ρ(e) and e′
a−→E e′′. We show that e′′ ∈ ρ(e) by induction on

e. In the base, the claim again holds immediately. For the inductive step,
there are three cases to consider.

• If e = e1 + e2, then either e′ ∈ ρ(e1) or e′ ∈ ρ(e2); we assume the
former without loss of generality. By induction, we then have that
e′′ ∈ ρ(e1), and hence e′′ ∈ ρ(e).

• If e = e1 · e2, then there are two subcases to consider.

– If e′ = e′1 · e2 with e′1 ∈ ρ(e1), then either e′′ = e′′1 · e2 with

e′1
a−→E e′′1 , or e′′ = e′2 with e2

a−→E e′2. In the former case, e′′1 ∈
ρ(e1) by induction, and hence e′′ = e′′1 · e2 ∈ ρ(e). In the latter
case, e′2 ∈ ρ(e2) by the first property of this lemma, and thus
e′′ = e′2 ∈ ρ(e) as well.

– If e′ ∈ ρ(e2), e1 ∈ A and e2
a−→E e′, then e′ ∈ ρ(e2) ⊆ ρ(e).

• If e = e∗1, then e′ = e′1 · e∗ with e′1 ∈ ρ(e1). There are two subcases
to consider.

– If e′′ = e′′1 · e∗ with e′1
a−→E e′′1 , then by induction e′′1 ∈ ρ(e1), and

hence e = e′′1 · e∗ ∈ ρ(e).

– If e′1 ∈ A and e′′ = e′′1 · e∗1 where e1
a−→E e′′1 , then e′′1 ∈ ρ(e1) by

the first property, and hence e′′ = e′′1 · e∗1 ∈ ρ(e).

We are now in a position to define our automaton for an expression e.

Definition 3.13. Let e ∈ E, and write ρ̂(e) for ρ(e)∪{e}. We write Ae for the
Antimirov automaton of e, which is given by ⟨ρ̂(e),→E, {e},A ∩ ρ̂(e)⟩.

Note that since ρ(e) is finite for every e, so is Ae.

Example 3.14. The reachable part of the Antimirov automaton for a · b∗ is
very similar to the automaton in Figure 5; the only difference is that the state
on the right is labelled by 1 · b∗, since a · b∗ a−→E 1 · b∗.

In the literature, when e
a−→E e′ you may see e′ referred to as a a-derivative

of e. Part of the reason for this nomenclature is an analogy with calculus,
where a function can be reconstructed by integrating its derivatives, and possibly
adding a constant. The same is true for expressions, in the sense that e can be
reconstructed from its derivatives, as witnessed by the following result.

Theorem 3.15 (Fundamental theorem). Let e ∈ E. The following holds:2

e ≡ [e ∈ A] +
∑
{a · e′ : e a−→E e′}

The proof proceeds by induction on e, and is part of today’s homework. The
fundamental theorem is very useful; for one thing, it lets us show quite easily
that the Antimirov automaton for e accepts precisely the language of e as an
expression, which we record in the following lemma.

2The generalized summation is a bit of an abuse of syntax, in two ways. First, it does not
specify the order or bracketing of the sum; fortunately, the latter is not an issue when it comes
to equivalence, by the axioms that we used to build ≡. Second, and more unfortunately, the
generalized

∑
overlaps with the traditional symbol Σ used to denote the alphabet; we persist

in this notation for now, as it is always clear from context what we mean.
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Lemma 3.16. Let e ∈ E. Now L(Ae) = JeKE.

Proof. Let w ∈ Σ∗. We prove that for all e′ ∈ ρ̂(e), it holds that w ∈ L(e′) if
and only if w ∈ Je′KE, by induction on w. In the base, w = ϵ. By Theorem 3.15
and soundness, we find that ϵ ∈ Je′KE if and only if e′ ∈ A, i.e., ϵ ∈ L(e′).

For the inductive step, let w = aw′. By Theorem 3.15 and soundness,
w ∈ Je′KE if and only if w′ ∈ Je′′KE for some e′′ ∈ E with e′

a−→E e′′. By induction,
the latter is equivalent to w′ ∈ L(e′′), and hence to w = aw′ ∈ L(e′).

We can now take a step back, and look at what we have: given expressions
e and f , we can construct automata Ae and Af such that L(Ae) = JeKE and
L(Af ) = JfKE. We can then convert these automata into deterministic automata
A′

e and A′
f such that L(A′

e) = JeKE and L(A′
f ) = JfKE. Given these deterministic

automata, it is necessary and sufficient to find a bisimulation relating {e} to {f}
to conclude that JeKE = JfKE. We return to this question in the next lecture.

7 Homework

1. Create an automaton for each of the following languages over Σ = {a, b}:

(a) The language L0 of words where every third letter is an a, unless it
is preceded by a b. Examples of words in L0 include aaa, ϵ, b, and
bbb. Examples of words not in L0 include aab and aaabab.

(b) (Optional) The language L1 of words that do not contain three sub-
sequent a’s or b’s. Examples of words in L1 include ϵ, ab and abaa.
Examples of words not in L1 include aaa and abbba.

2. (Optional) Try to write a regular expression whose language coincides with
the language of the automaton on the right in Figure 1. Can you come up
with a succinct (prosaic) description of the language?

3. Consider the automata drawn below:

x y z u v w
a, b a, b

a, b

a

b

a, b

a, b

Prove that x and u are bisimilar.

4. (Optional) Prove that the following three properties are invariants of the
while-do loop in Algorithm 1 — that is to say: they are true before the
loop starts, and they are preserved every time the loop body runs in full:3

(a) If ⟨q′1, q′2⟩ ∈ R, then q′1 ∈ F1 if and only if q′2 ∈ F2.

(b) If ⟨q′1, q′2⟩ ∈ R, then ⟨δ1(q′1, a), δ(q′2, a)⟩ ∈ R ∪ T for all a ∈ Σ.

(c) If R′ is a bisimulation relating q1 to q2, then R ∪ T ⊆ R′.

3In particular, this means that the return statement is not executed.
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Show that, when the loop terminates, these properties together with T = ∅
imply that R is the smallest bisimulation relating q1 to q2.

5. (Optional) Show that Algorithm 1 terminates if Q1 and Q2 are finite.

6. Prove the fundamental theorem (Theorem 3.15) by induction on e. Your
induction hypothesis should be that the claim holds for all direct subex-
pressions of e. For instance, for the case e = e0 · e1, you may assume

ei ≡ [ei ∈ A] +
∑
{a · e′ : ei

a−→E e′}

Hint: for the case where e = e∗0, it is useful to first prove that, for all
f ∈ E and b ∈ {0, 1}, it holds that (b+ f)

∗ ≡ f∗.

7. Use Antimirov’s construction to come up with an automaton for the ex-
pression b∗ ·a. Start from the expression, and expand the automaton from
there; you do not need to include any unreachable states in ρ(b∗ · a).

8. Apply the powerset construction to the automaton obtained from the pre-
vious exercise. You may omit unreachable states once more.

9. (Optional) Construct the Antimirov automaton for e = a+a ·b+a ·b ·b∗.
Is the state e bisimilar to the state a · b∗ in Figure 5?

8 Bibliographical notes

Automata developed over time, but some of the very first ideas appeared in the
work of McCulloch and Pitts [MP43]. Rabin and Scott [RS59] first discussed the
constrast between deterministic and non-deterministic automata, and proposed
the powerset construction. In fact, the latter paper specifically won them the
Turing award, sometimes called the “Nobel prize for computer science”.

Moore [Moo56] observed that language equivalence of finite automata is
decidable. Another algorithm to achieve the same is due to Hopcroft [Hop71].
The algorithm presented is a simplified version of a more sophisticated algorithm
due to Hopcroft and Karp [HK71]. There is also a kind of efficient bisimulation
that works for non-deterministic automata, due to Bonchi and Pous [BP13].

Kleene [Kle56] first observed the connection between rational expressions
and automata. Antimirov’s construction [Ant96] was based on Brzozowski’s
construction [Brz64], which produces a deterministic automaton instead (but is
slightly more complicated). Later constructions include an inductive construc-
tion by Thompson [Tho68]. For a good overview, we refer to Watson [Wat93].
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