
Kleene Algebra — Lecture 2

Tobias Kappé

ESSLLI 2023

1 Today’s lecture

In the last lecture, we saw the syntax of rational expressions, and we gave one
possible semantics that was based on interpreting the primitive programs as
relations. We also saw that we can reason about equivalence of these expressions
using a set of rules, and that we can prove some non-trivial equivalences, like

e · (f · e)∗ ≡ (e · f)∗ · e (e+ f)
∗ ≡ e∗ · (f · e∗)∗

Furthermore, if we choose our primitive programs well, we can encode con-
structs like while-do and if -then-else, using non-deterministic composition
operators like + and ∗ to obtain programs that proceed deterministically.

These “filtering” programs are commonly given an interpretation of the form
{⟨s, s⟩ : P (s)}, where P was some sort of predicate. They check if the machine
is in a state satisfying P , and if this is the case, continue as usual; on the other
hand, if the current state does not satisfy P , no further step is possible.

It turns out that these filtering programs actually admit their own equations:
those of Boolean algebra. For instance, if the interpretation of a, b ∈ Σ is a sub-
identity relation, then a·b has the same semantics as b·a. However, this equality
does not hold in general for programs — that would be very strange!

Today, we will augment our syntax of rational expressions and add such
programs on their own terms, as tests. This will allow us to add new rules spe-
cialized for tests, encode well-known programming constructs more uniformly,
and also prove some more familiar general equivalences between programs.

2 Syntax

We are going to add a new layer to the syntax of rational expressions, to obtain
guarded rational expressions. To do this, we also need to fix a (finite) set of
primitive tests, which we denote by T . Think of these as the checks that cannot
be written as compositions of other checks in your program.

Definition 2.1. Boolean expressions (over T) and guarded rational expressions
(over Σ and T) are generated by the first and second layer of the grammar:

b, c ::= 0 | 1 | t ∈ T | b+ c | b · c | b e, f ::= b | a ∈ Σ | e+ f | e · f | e∗

We will write B(T) for the set of Boolean expressions over T , and G(Σ, T) for
the set of guarded rational expressions over Σ and T ; usually, we elide Σ and T .

1

Observe that our syntax for disjunction (resp. conjunction) on the level of
Boolean expressions overlaps with that of choice (resp. concatenation). This
might seem cumbersome, but it’s actually not a problem. For instance, we will
see later on that the semantics of the b+ c, where b+ c is a test, is the same as
the semantics of b+ c where b and c are tests, composed non-deterministically.

Furthermore, note that we create a program from a Boolean expression b.
Intuitively, if b is a Boolean expression, then the program b should be read as
“check whether b holds, and continue if it does (leaving the state unchanged);
otherwise, abort execution”. In other words, you can think of such a program
as the assert statement in some programming languages.

Lastly, note that the constant programs 0 and 1 have moved to the first layer
of our syntax. As Boolean expressions, you should think of them as the constants
false and true respectively. Their interpretations as programs matches with the
intuition about assert statements: you can see the program 0 as assert false:
the program that unconditionally aborts execution, while assert true is the
program that unconditionally does nothing, and simply continues.

3 Relational semantics

Our new syntax needs a new semantics. First, we need to fix an interpretation
for the primitive tests, just like we did for the primitive programs. Recall that
programs transform state, so we assigned each primitive program a relation on
states. Tests, on the other hand, are not meant to change the state at all;
rather, their behavior is completely determined by whether or not they hold in
a certain state. This motivates the following definition.

Definition 2.2. A (guarded) interpretation is a triple ⟨S, τ, σ⟩, where S is a set
and τ : T → 2S as well as σ : Σ→ 2S×S are functions.

You can think of τ as assigning, to each primitive test t ∈ T , the set of
states τ(t) where t is true. We can then build on this primitive interpretation
to extend it to obtain semantics of Boolean expressions, as follows:

Definition 2.3. For an interpretation with τ : T → 2S , we define L−Mτ : B→ 2S

by induction on the input expression, as follows:

L0Mτ = ∅ L1Mτ = S LtMτ = τ(t)

Lb+ cMτ = LbMτ ∪ LcMτ Lb · cMτ = LbMτ ∩ LcMτ LbMτ = S \ LbMτ

Intuitively, LbMτ should be thought of as the set of states where the test b is
true. For instance, when b = t0 · t1, this comes down to the set of all states
where both t0 and t1 are true, which is exactly τ(t0) ∩ τ(t1).

We can build on this semantics for Boolean expressions to obtain a semantics
for guarded rational expressions. As you might expect, this semantics turns the
set of states satisfied by a test into a sub-identity relation.

Definition 2.4. For an interpretation with τ : T → 2S and σ : Σ→ 2S×S , we
define the ⟨σ, τ⟩-semantics J−Kσ,τ : G→ 2S×S inductively, as follows:

JbKσ,τ = {⟨s, s⟩ : s ∈ LbMτ} JaKσ,τ = σ(a)

Je+ fKσ,τ = JeKσ,τ ∪ JfKσ,τ Je · fKσ,τ = JeKσ,τ ◦ JfKσ,τ Je∗Kσ,τ = JeK∗σ,τ

2

Let b, c ∈ B. As hinted, there are now two ways of interpreting b + c.
Fortunately, for us, they coincide, and so we have no ambiguity in our semantics.
If you like, you can try proving this as an optional exercise.

Let’s consider an example of using guarded rational expressions to encode
the integer square root program that we saw during the last lecture:

i← 0;

while (i+ 1)
2 ≤ n do

i← i+ 1;

This time, instead of using two primitive programs to encode (i+ 1)
2 ≤ n and

its negation, we are going to use a single primitive test. Let’s call it bound, and
re-use the programs init and incr. We end up with the following program:

init · (bound · incr)∗ · bound

Let’s use the same semantic domain to interpret this program — i.e., S is the set
of functions from {i, n} to N. We need to give an interpretation of the primitive
test bound, and the primitive programs init and incr, which we do as follows:

τ(bound) = {s ∈ S : (s(i) + 1)
2 ≤ s(n)}

σ(init) = {⟨s, s[0/i]⟩ : s ∈ S} σ(incr) = {⟨s, s[s(i) + 1/i]⟩ : s ∈ S}

4 Flow control

By now, you are familiar with techniques that encode deterministic flow-control
in rational expressions. Because we have an operator for negation on tests, we
can also generalize this pattern to obtain the following shorthands, for Boolean
expressions b and guarded rational expressions e and f :

if b then e else f := b · e+ b · f while b do e := (b · e)∗ · b

For example, our integer square root finding program can be written as

init ·while bound do incr

This nicer, more readable syntax, will enable us to make some general statements
about imperative programs in a moment. Keep in mind, however, that “under
the hood”, expressions like these encode plain old guarded rational expressions.

Let’s go over the intuition behind these encodings. For the if -then-else
construct, we create a program that non-deterministically chooses between b · e
and b · f . If the current state satisfies b it does not satisfy b, and only the result
of the left-hand program will survive — i.e., the one obtained by executing e.
Conversely, if the current state satisfies b, then only the right-hand branch will
execute. Thus, this program chooses between executing e or f , based on b.

Furthermore, the while-do construct is a program that executes b · e some
(non-deterministic) number of times, and finally executes b. Note however, that
the only non-deterministic choice here is between executing b · e one more time,
and executing b — again, only one branch “survives”, which is the one where e
is executed as long as b is true, and halts when b is no longer true.

3

5 Boolean reasoning

Note how, in the syntax above (and in contrast with the last lecture), there was
no need to create a separate primitive test or program to encode the negation of
the loop guard — we can simply use the negation operator that is native to our
syntax. More generally, we can make the internal structure of our tests part of
the syntax now, including conjunctions and disjunctions, and reason about it.

In order to do that, however, we are going to need a set of rules that allows
us to reason about tests. Luckily, it turns out that the laws of Boolean algebra
augment our reasoning principles in a suitable way, as follows.

Definition 2.5 (Boolean algebra). We define ≡B as the smallest congruence on
B satisfying the following rules, for all b, c, d ∈ B:

b+ 0 ≡B b b+ c ≡B c+ b b+ b ≡B 1 b+ (c+ d) ≡B (b+ c) + d

b · 1 ≡B b b · c ≡B c · b b · b ≡B 0 b · (c · d) ≡B (b · c) · d

b+ c · d ≡B (b+ c) · (b+ d) b · (c+ d) ≡B b · c+ b · d

Whenever it is clear that we are reasoning about Boolean expressions, we will
drop the subscript B and simply write ≡.

These rules may seem rather terse, but it turns out that they are complete:
every equality that is true under any interpretation of the primitive tests τ can
be proved using these rules. Unfortunately, we do not have the time to fully
prove this claim; instead, let’s take the rules for a spin, to see how we can use
them, and what kind of useful things we can show. Here is one.

Lemma 2.6. If b and c are tests such that b+c ≡B 1 and b ·c ≡B 0, then b ≡B c.

Note now, intuitively, the premises sort of describe b and c as opposites: at
least (left premise) and at most (right premise) one is true. Let’s see the proof.

Proof of Lemma 2.6. We derive as follows:

c ≡ c+ 0 (unit)

≡ c+ b · c (premise)

≡ (c+ b) · (c+ c) (distributivity)

≡ (c+ b) · 1 (eliminated middle)

≡ (c+ b) · (b+ b) (eliminated middle)

≡ c · b+ b (distributivity)

≡ c · b · 1 + b (unit)

≡ c · b · (b+ c) + b (premise)

≡ c · b · b+ c · b · c+ b (distributivity)

≡ c · b · b+ b · c · c+ b (commutativity)

≡ c · 0 + b · 0 + b (absurdity)

≡ 0 + 0 + b (absorption)

≡ b (unit)

4

You are most likely already familiar with DeMorgan’s laws. Let’s prove the
algebraic encoding of the first law from our axioms, using Lemma 2.6.

Lemma 2.7 (De Morgan’s first law). If b and c are tests, then b+ c ≡ b · c.

Proof. By the previous lemma, it suffices to show the following two equivalences:

b · c+ b+ c ≡ 1 b · c · (b+ c) ≡ 0

For the first equivalence, we derive

b · c+ b+ c ≡ (b+ b+ c) · (c+ b+ c) (distributivity)

≡ (b+ b+ c) · (b+ c+ c) (commutativity)

≡ (1 + c) · (b+ 1) (eliminated middle)

≡ 1 · 1 (absorption)

≡ 1 (idempotence)

For the second equivalence, we derive

b · c · (b+ c) ≡ b · c · b+ b · c · c (distributivity)

≡ c · b · b+ b · c · c (commutativity)

≡ c · 0 + b · 0 (absurdity)

≡ 0 + 0 (absorption)

≡ 0 (idempotence)

Before we wrap up our discussion of Boolean equivalence, let’s check if these
rules are fit for reasoning about Boolean expressions:

Lemma 2.8 (Soundness for Boolean algebra). Let b, c ∈ B, and let τ : T → 2S

be (part of an) interpretation. If b ≡B c, then LbMτ = LcMτ .

Proof sketch. We again proceed by induction on the construction of ≡B. In the
base, we need to validate the generating rules. For instance, for b+ c ≡B c+ b:

Lb+ cMτ = LbMτ ∪ LcMτ = LcMτ ∪ LbMτ = Lc+ bMτ

Each of these is fairly straightforward; you will look at one case in the homework.
For the inductive step, we need to validate the congruence rules. For in-

stance, if b0 · c0 ≡B b1 · c1 because b0 ≡B b1 and c0 ≡B c1, then we know that
Lb0Mτ = Lb1Mτ and Lc0Mτ = Lc1Mτ by induction. We can then derive that

Lb0 · c0Mτ = Lb0Mτ ∩ Lc0Mτ = Lb1Mτ ∩ Lc1Mτ = Lb1 · c1Mτ

The other cases are similar.

6 Guarded reasoning

Now that we have discussed the rules for Boolean equivalence, we can weave the
rules we use at that level together with the rules for rational expressions that
we already know. It turns out they combine quite well: we can simply adjoin
both sets of rules, making sure that ≡B applies only to the Boolean terms.

5

Definition 2.9 (Kleene Algebra with Tests). We define ≡G as the smallest
congruence on G satisfying the following rules for all b, c ∈ B and e, f, g ∈ G:

b ≡B c =⇒ b ≡G c e+ 0 ≡G e e+ e ≡G e e+ f ≡G f + e

e+ (f + g) ≡G (e+ f) + g e · (f · g) ≡G (e · f) · g

e · (f + g) ≡G e · f + e · g (e+ f) · g ≡G e · g + f · g

e · 1 ≡G e ≡G 1 · e e · 0 ≡G 0 ≡G 0 · e 1 + e · e∗ ≡G e∗ ≡G 1 + e∗ · e

e+ f · g ≦G g =⇒ f∗ · e ≦G g e+ f · g ≦G f =⇒ e · g∗ ≦G f

Just like before, we use e ≦G f as a shorthand for e+f ≡G f . We will also drop
the subscript G when the expressions being reasoned on are clear from context.

Lemma 2.10 (Soundness for Kleene Algebra with Tests). Let e, f ∈ G, and let
⟨S, τ, σ⟩ be a guarded interpretation. If e ≡G f , then JeKσ,τ = JfKσ,τ .

Let’s take our shiny set of rules for a spin to prove some truths about pro-
grams that you may already be familiar with from programming.

Lemma 2.11. Let e, f ∈ G as well as b ∈ B. The following holds:

if b then e else f ≡ if b then f else e

Proof. This is a matter of unrolling the syntactic sugar and applying our rules:

if b then e else f = b · e+ b · f (by definition)

≡ b · f + b · e (commutativity)

≡ b · f + b · e (see below)

= if b then f else e (by definition)

Here, we used that b ≡ b, something that you will prove in the homework.

Let’s introduce one more shorthand in our notation. For tests b and programs
e, we use “if b then e” for b ·e+b. Note how this expression intuitively matches
your understanding of the if -then construct: if b holds, then the b · e branch is
executed; otherwise, b holds, and so the b branch is executed (but the state is
not changed). Using this shorthand, we can state the following:

Lemma 2.12. Let e ∈ G and b ∈ B. The following holds:

while b do e ≡ if b then (e ·while b do e)

Proof. We again unfold the syntactic sugar and apply our rules, as follows:

while b do e = (b · e)∗ · b (by definition)

≡ (b · e · (b · e)∗ + 1) · b (unrolling)

≡ b · e · (b · e)∗ · b+ 1 · b (distributivity)

≡ b · e · (b · e)∗ · b+ b (unit)

= if b then (e · (b · e)∗ · b) (by definition)

= if b then (e ·while b do e) (by definition)

6

7 Language semantics

There is also a language semantics of guarded rational expressions. This se-
mantics needs to account for tests, and so it is structured slightly differently.
Instead of words, we will use guarded words, where letters are interspersed with
elements from 2T . A guarded word can look like this αaβbγ, where α, β, γ ∈ 2T

and a, b ∈ Σ. You can think of these atoms as markers describing the state of
the machine between actions: in αaβbγ, the machine starts in state α and runs
a, which puts it in state β, and then, after running b it ends in the state γ.

We develop some auxiliary notions first.

Definition 2.13. A guarded language is a subset of 2T · (Σ · 2T)∗. We write

(Σ, T)
∗
for the set of guarded languages, that is to say, for 22

T ·(Σ·2T)
∗
.

Let L and K be guarded languages. We write L ⋄K for the guarded product
of L and K, which is defined as

L ⋄K = {wαx : α ∈ 2T , wα ∈ L,αx ∈ K}

Furthermore, we write L(⋄) for the guarded star of L, which is the language

L(⋄) = 2T ∪ L ∪ L ⋄ L ∪ L ⋄ L ⋄ L ∪ · · ·

Alternatively, we can describe L(⋄) as
⋃

n∈N L(n), where L(0) = 2T , and L(n+1) =

L ⋄ L(n). Note that L(1) = L, as 2T is neutral for guarded product.

With these operators in hand, we can define the language semantics of a
guarded rational expression in terms of a guarded rational language, as follows.

Definition 2.14. We define L−MG : B→ 22
T

inductively, as follows:

L0MG = ∅ L1MG = 2T LtMG = {α ∈ 2T : t ∈ α}

Lb+ cMG = LbMG ∪ LcMG Lb · cMG = LbMG ∩ LcMG LbMG = S \ LbMG

Next, we define J−KG : G→ (Σ, T)
∗
inductively, as follows:

JbKG = LbMG JaKG = {a}

Je+ fKG = JeKG ∪ JfKG Je · fKG = JeKG ⋄ JfKG Je∗KG = JeK(⋄)G

Note that the first clause is well-defined, as every α ∈ 2T is also a guarded word.

The guarded language semantics connects to the guarded relational seman-
tics in complete analogy with what we have seen before: it abstracts over the
interpretation. More precisely we have the following.

Lemma 2.15. Let e, f ∈ G. Now JeKG = JfKG if and only if for all σ and τ ,
we have JeKσ,τ = JfKσ,τ .

8 Going forward

This lecture was mostly intended to expose you to guarded rational expressions,
their semantics, and their use when reasoning about program structures. The
remainder of this course will focus on the completeness question, introduced in
the first lecture. This means that, sadly, we will not return to guarded rational
expressions. However, all of the constructions that we will see from here on do
generalize quite nicely from rational expressions to guarded rational expressions.

7

9 Homework

1. Let’s practice Boolean equivalences. In the following, let b, c ∈ B.

(a) Use Lemma 2.6 to prove that b ≡ b.

(b) Prove DeMorgan’s second law: b · c = b+ c.

(c) Our rules are somewhat redundant, in that some of the rules can be
proved from the other rules. Show that this is the case for b+ b ≡ b.

(d) (Optional) Prove that b+ (b+ c) ≡ 1 without using associativity.

2. On to practice guarded rational equivalence. Let b, c ∈ B and e, f, g ∈ G.

(a) Prove that the if -then-else construct is “skew-associative”, i.e.:

if b then (if c then e else f) else g

≡ if b · c then e else (if b then f else g)

Hint 1: It’s easier to start your derivation with the second program.

Hint 2: You may use the facts proved in the previous exercise.

(b) Suppose if b then e ·f else g ≦ f . Show that (while b do e) ·g ≦ f .

Hint: You need to use second-to-last rule from Definition 2.9.

3. Recall the two programs that we saw in the first lecture:

while a and b do

e;
while a do

f;
while a and b do

e;

while a do

if b then

e;
else

f;

Show that these are the same by interpreting if -then-else and while-do
according to Section 4 and using the axioms from Definition 2.9.

4. Hoare logic is a formalism for reasoning about the correctness of programs.
Its statements are triples denoted {P}C{Q}, where P and Q are logical
formulas, and C is a program. Such a triple holds when, if a machine starts
in a state satisfying P , it reaches a state satisfying Q after executing C.

We can encode Hoare logic using guarded rational expressions: writing

{b}e{c} as a shorthand for b · e · c ≡ 0

The idea is that, if b ·e · c ≡ 0, then there is no valid way to execute b ·e · c,
i.e., to assert that b holds, execute e, and then assert that c holds. Thus,
necessarily, if e runs to completion after asserting b, then c holds.

In this exercise, you will verify that the rules of inference in Hoare logic are
actually compatible with this encoding in guarded rational expressions.

8

(a) Hoare logic contains the following rule for sequential composition:

{P}C1{Q} {Q}C2{R}
{P}C1;C2{R}

Verify the compatibility of this rule: given b, c, d ∈ B and e, f ∈ G
such that {b}e{c} and {c}f{d} hold, prove that {b}e · f{d} holds.

(b) (Optional) The following rule governs while-do constructs.

{P ∧Q}C{P}
{P}while Q do C{¬Q ∧ P}

Verify this rule as well: given b, c ∈ B and e ∈ G such that {b · c}e{b}
holds, prove that {b}while c do e{c · b} holds.
Hint 1: first argue that b · (c · e)∗ ≦ (c · e)∗ · b.
Hint 2: remember that if e ≦ e′, then e · f ≦ e′ · f .

10 Bibliographical notes

Kleene Algebra with Tests as such was first introduced by Kozen [Koz96],
where the encoding of traditional imperative programs also appears. Relevant
follow-up work includes [KS96, Koz97]. In particular, the correspondence be-
tween guarded languages and guarded relational models is due to Kozen and
Smith [KS96]. The connection with Hoare logic was explored by Kozen [Koz00].

Boolean algebra comes from George Boole [Boo47, Boo54]. Whitehead pro-
posed the first axiomatization [Whi98]; his axioms are almost the same as the
ones above, except that Whitehead’s absorbtion laws are replaced by the idem-
potence law. A concise set of laws for Boolean algebra is due to Hunting-
ton [Hun04]. De Morgan is credited with the well-known inversion laws [DM47],
though they appear to have been known since Aristotle, if not before.

References

[Boo47] George Boole. The Mathematical Analysis of Logic: Being an Es-
say Towards a Calculus of Deductive Reasoning. MacMillan, Barclay
& MacMillan, London, 1847. URL: https://www.gutenberg.org/
ebooks/36884.

[Boo54] George Boole. An investigation of the laws of thought: on which are
founded the mathematical theories of logic and probabilities. Walton
and Maberly, London, 1854. URL: https://www.gutenberg.org/

ebooks/15114.

[DM47] Augustus De Morgan. Formal logic: or, the calculus of inference,
necessary and probable. Taylor and Walton, London, 1847. URL:
https://archive.org/details/formallogicorthe00demouoft.

[Hun04] Edward V. Huntington. Sets of independent postulates for the algebra
of logic. Trans. Am. Math. Soc., 5(3):288–309, 1904. doi:10.1090/

s0002-9947-1904-1500675-4.

9

https://www.gutenberg.org/ebooks/36884
https://www.gutenberg.org/ebooks/36884
https://www.gutenberg.org/ebooks/15114
https://www.gutenberg.org/ebooks/15114
https://archive.org/details/formallogicorthe00demouoft
https://doi.org/10.1090/s0002-9947-1904-1500675-4
https://doi.org/10.1090/s0002-9947-1904-1500675-4

[Koz96] Dexter Kozen. Kleene algebra with tests and commutativity conditions.
In TACAS, pages 14–33, 1996. doi:10.1007/3-540-61042-1_35.

[Koz97] Dexter Kozen. Kleene algebra with tests. ACM Trans. Program. Lang.
Syst., 19(3):427–443, 1997. doi:10.1145/256167.256195.

[Koz00] Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM
Trans. Comput. Log., 1(1):60–76, 2000. doi:10.1145/343369.343378.

[KS96] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Com-
pleteness and decidability. In CSL, pages 244–259, 1996. doi:

10.1007/3-540-63172-0_43.

[Whi98] Alfred North Whitehead. A Treatise on Universal Algebra, with Ap-
plications. Cambridge University Press, Cambridge, 1898. URL:
https://archive.org/details/atreatiseonuniv00goog.

10

https://doi.org/10.1007/3-540-61042-1_35
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/343369.343378
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1007/3-540-63172-0_43
https://archive.org/details/atreatiseonuniv00goog

	Today's lecture
	Syntax
	Relational semantics
	Flow control
	Boolean reasoning
	Guarded reasoning
	Language semantics
	Going forward
	Homework
	Bibliographical notes

