
Kleene Algebra — Lecture 1

Tobias Kappé

ESSLLI 2023

1 Housekeeping

Welcome to this ESSLLI course on Kleene Algebra! If you’re reading this, you’re
looking at the first set of lecture notes. These serve as an aid to both my verbal
lectures, and as a reference for you to consult in your own time.

Let’s get some housekeeping out of the way before we start. First of all,
the best way to reach me is to send me an email. If you have any questions
regarding course material or organization, please contact me there.

Lecture notes and supplemental material are distributed through the website:

https://kap.pe/esslli

Lectures consist of two 40-minute parts, with a 10-minute break. Each
lecture has a set of homework exercises attached to it, which you can work
through to get a better understanding of the material discussed.

The objective for this course is twofold. First, I will try to convince you
that equational reasoning using Kleene algebra a can be interesting, and even
productive when applied to programs. Second, the course serves as a case study
for a non-trivial completeness proof, with several elegant techniques that echo
concepts at the intersection of logic, mathematics, and computer science.

2 Framework

You know how to manipulate mathematical expressions according to certain
laws. For instance, multiplication distributes over addition — i.e., if x, y and z
are numbers, then x · (y + z) is equivalent to x · y + x · z. Nevertheless, these
expressions are not equal ; for instance, the former expression includes just one
multiplication, whereas the latter has two.

You may feel that algebraic expressions like this are bit mundane — didn’t
you already conquer this topic when you graduated from secondary school?
Why on earth are we discussing this again? The answer lies not in the specific
application, but rather in the technique: the idea that we can reason about
equivalence of expressions by manipulating their syntax, using a few basic ax-
ioms. These ideas go back all the way to antiquity, and have borne fruit in the
form of further mathematical results up to the present day.

But there is no reason to limit equational reasoning to expressions pertaining
to numbers. Indeed, computer programs can also be thought of as expressions
in a certain syntax. For instance, the following two programs are equivalent:

1

https://kap.pe/esslli

while a and b do

e;
while a do

f;
while a and b do

e;

while a do

if b then

e;
else

f;

Part of the purpose of this course in general, and the first two lectures in
particular, you should be able to reason algebraically about programs such as
these two. The composition operators for programs adhere to some rules that
you already know, but others will be new and require some exercise.

Once you are comfortable with equational reasoning about programs, new
questions arise. For instance, is there a set of axioms that allow us to prove
all equations that are true about programs in general? How can we automate
our reasoning about program equivalence? Can we solve equations that con-
tain “unknown” programs, thereby obtaining a program that satisfies certain
properties? We will address all of these questions in due time.

3 Syntax

Let’s look at an extremely simple “programming language”, which will form
the basis of the systems that we will encounter in this course: the rational
expressions. Rational expressions are built using a finite set of actions Σ =
{a, b, c}. Each action represents a primitive operation that can be performed
by our program; for example, a could mean “make the red LED blink once” or
“verify that the next input letter is a”. These actions are our building blocks:
they can typically not be expressed as compositions of simpler actions.
We can build our programs from primitive programs:

• The program e · f first runs e, and then f .

• The program e+ f non-deterministically runs e or f .

• The program e∗ repeats e some number of times, possibly zero.

• The constant program 0 has no valid behavior.

• The constant program 1 skips — i.e., it does nothing whatsoever.

Definition 1.1. Rational expressions (over Σ) are generated by the grammar:

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e∗

We will write E(Σ) for the set of expressions over Σ, and usually elide Σ.

You may have seen something very similar to this syntax if you used the regular
expressions matching library available to your favorite programming language.
The connection with regular expressions will be made explicit later this week.

You might wonder: why would I ever want to non-deterministically combine
two programs, or run my program some indeterminate number of times? This
programming language seems a bit wacky! The answer is two-fold:

2

1. It is useful to compare your program to another program that represents
a set of desirable behaviors. That is to say, you want to check whether
your program exhibits only behaviors that are good, or at least not bad.
When specifying this behavior as a program, it is often useful to use non-
determinism to “lump together” the behaviors that you deem permissible.

2. If, on the other hand, you want to specify your exact program, you need
to tame the set of behaviors represented somehow. This can be done by
carefully choosing the semantics of your primitive program (more on that
in a moment), or by extending the syntax to include “tests” (next lecture).

4 An example program

Let’s look at a small example of how you can program in this language. Suppose
you are given a natural number n, and want to find out the integer square root
of n — in other words, the largest number i such that i2 ≤ n. In a traditional
programming language, you could write something like the following

i← 0;

while (i+ 1)
2 ≤ n do

i← i+ 1;

In our programming language, you could write this algorithm as follows:

init · (guard · incr)∗ · validate

Here, init, guard, incr and validate are all primitive programs, where:

• init sets the variable i to zero, and leaves the other variables unaffected.

• guard checks if (i+ 1)
2 ≤ n. If this is the case, it does nothing; otherwise,

it aborts program execution (i.e., kills this non-deterministic branch).

• incr increments the value of i, and leaves the other variables unaffected.

• validate is the opposite of guard: if (i+ 1)
2
> n, it does nothing, and it

aborts the program in all other cases.

The checks guard and validate may seem weird — why would we want to
deliberately abort the program? The idea here is to remove invalid executions.

For instance, suppose that, at the beginning of the program, n = 0. We first
execute init, so i = 0 as well. There are now two possibilities:

• If we execute guard · incr some positive number of times, then the next
thing we should do is run guard. But because (i+ 1)

2
> n, this aborts

the program! This possiblity is therefore discarded.

• Otherwise, we can execute guard · incr zero times. In that case, the pro-
gram executes validate, but survives, reaching the end of our program.

In total, there is only one way of executing the program for this input: skip the
loop on guard · incr entirely.

3

5 Semantics

We have our programming language syntax, but we have not yet defined what
programs in the language mean. One way to do this, is to assign a semantics
in terms of a relation on machine states, representing the possible effects that
a program may have on the machine state. To do this, we first need to fix the
meaning of the primitive programs, which we do as follows.

Definition 1.2. An interpretation of Σ is a pair ⟨S, σ⟩, where S is a set (of
states) and σ is a function from Σ to relations on S, i.e., σ : Σ → 2S×S . We
often denote an interpretation simply by σ, with S as the set of states.

When we fix an interpretation, we can give an interpretation of a program.

Definition 1.3. Given an interpretation σ : Σ → 2S×S , we define the σ-
semantics J−Kσ : E→ 2S×S inductively, as follows:

J0Kσ = ∅ J1Kσ = idS JaKσ = σ(a)

Je+ fKσ = JeKσ ∪ JfKσ Je · fKσ = JeKσ ◦ JfKσ Je∗Kσ = JeK∗σ

In the above, we write idS for the identity relation on S, i.e.,

idS = {⟨s, s⟩ : s ∈ S}

We also write R1 ◦R2 for the relational composition of R1, R2 ⊆ S × S, i.e.,

R1 ◦R2 = {⟨s1, s3⟩ : ∃s2. s1 R1 s2 R2 s3}

Finally, we write R∗ for the reflexive-transitive closure of R, or alternatively

R∗ =
⋃
n∈N

Rn where R0 = idS and Rn+1 = R ◦Rn

Returning to our example program, we can give the following interpretation
to the primitive programs. First, we need to fix our machine states. In this case,
the program has two variables i and n, both of which are natural numbers. This
means that the state of the machine is entirely described by the current values
for i and n. Thus, we choose for S the set of functions s : {i, n} → N.

Next, we can fix our interpretation of the primitive programs, as follows:

σ(init) = {⟨s, s[0/i]⟩ : s ∈ S}

σ(guard) = {⟨s, s⟩ : (s(i) + 1)
2 ≤ s(n)}

σ(incr) = {⟨s, s[s(i) + 1/i]⟩ : s ∈ S}

σ(validate) = {⟨s, s⟩ : (s(i) + 1)
2
> s(n)}

Here, we write s[k/v] for the function that is the same as s, except that we
replace the value of v with k. More precisely, s[k/v] : {i, n} → N is given by

s[k/v](v′) =

{
k v = v′

s(v′) otherwise

4

6 Reasoning

Given two programs e and f , can we work out whether they have the same se-
mantics? This is not an easy question at all! For one, as we have seen, the seman-
tics is dependent on the interpretation given to primitive symbols. It then stands
to reason that equivalence also depends on the interpretation. What’s more,
even if we fix an interpretation, we may still be in trouble when the semantic
domain is infinite. For instance, under the example program and interpretation
we saw before, it is not too hard to show that Jinit·(guard · incr)∗ ·validateKσ
is an infinite relation, and so we cannot compute it explicitly.

It turns out that we can still do some reasoning about programs if we ab-
stract from the interpretation, and focus on the composition operators, whose
definition does not (directly) depend on the interpretation. For example, let
e, f ∈ E. Now the program e+ f has the same semantics as f + e, regardless of
the interpretation σ. After all, we can calculate the following:

Je+ fKσ = JeKσ ∪ JfKσ = JfKσ ∪ JeKσ = Jf + eKσ

This brings us to the following rules for equivalence of programs.

Definition 1.4 (Kleene Algebra). We define ≡ as the smallest congruence on
E satisfying the following rules, for all programs e, f, g ∈ E:

e+ 0 ≡ e e+ e ≡ e e+ f ≡ f + e e+ (f + g) ≡ (e+ f) + g

e · (f · g) ≡ (e · f) · g e · (f + g) ≡ e · f + e · g (e+ f) · g ≡ e · g + f · g

e · 1 ≡ e ≡ 1 · e e · 0 ≡ 0 ≡ 0 · e 1 + e · e∗ ≡ e∗ ≡ 1 + e∗ · e

e+ f · g ≦ g =⇒ f∗ · e ≦ g e+ f · g ≦ f =⇒ e · g∗ ≦ f

Here, we use e ≦ f as a shorthand for e+ f ≡ f .

Most of these rules are fairly easy to understand intuitively. For instance,
the rule e + e ≡ e says that a non-deterministic choice between executing e or
e is really no choice at all — the + operator is idempotent. Similarly, choosing
between e and f + g is the same as choosing between e+ f and g, as witnessed
by the rule e+ (f + g) ≡ (e+ f) + g — the operator + is associative.

To check that these rules are sound, we must validate that expressions related
by ≡ indeed have the same semantics. This turns out to be the case.

Lemma 1.5. Suppose e ≡ f , and let σ be an interpretation. Then JeKσ = JfKσ.

Proof sketch. We proceed by induction on ≡ as a relation. In the base, we must
check all of the rules on the first three lines. For instance, we have already
validated that Je + fKσ = Jf + eKσ, so the rule e + f ≡ f + e is covered. Each
of these cases is fairly straightforward; some of them are left as homework.

For the inductive step, there are two things we must check.

• Since ≡ is a congruence, we must check that if e0 ≡ f0 and e1 ≡ f1,
then e0 + e1 ≡ f0 + f1, and similarly for other operators. This is fairly
straightforward: by induction, we have Je0Kσ = Je1Kσ and Jf0Kσ = Jf1Kσ.
Thus, Je0 + e1Kσ = Je0Kσ ∪ Je1Kσ = Jf0Kσ ∪ Jf1Kσ = Jf0 + f1Kσ.

5

• We must also validate the last two rules. Let’s look at the first one; the
other can be treated similarly. Here, we have that f∗ · e ≦ g because
e + f · g ≦ g. By induction, we then know that JeKσ ∪ JfKσ ◦ JgKσ =
Je + f · gKσ ⊆ JgKσ. We must show that JfK∗σ ◦ JeKσ = Jf∗ · eKσ ⊆ JgKσ.
This amounts to showing that JfKnσ ◦ JeKσ ⊆ JgKσ for all n ∈ N.
We proceed by induction on n. In the base, where n = 0, we have

JfK0σ ◦ JeKσ = idS ◦ JeKσ = JeKσ ⊆ JgKσ.

For the inductive step, assume that the claim holds for n. We calculate:

JfKn+1
σ ◦ JeKσ = JfKσ ◦ JfKnσ ◦ JeKσ ⊆ JfKσ ◦ JgKσ ⊆ JgKσ

This completes the proof.

Let’s look at an example of how we can use these rules, particularly the last
two rules, to show a non-trivial equivalence. Let a, b ∈ Σ, and consider the
programs a · (b · a)∗ and (a · b)∗ · a. We can intuitively understand that these
programs do the same thing: they execute a and b in alternation, starting and
ending with an a. To show equivalence, we need the following lemma.

Lemma 1.6. Let e, f ∈ E. Now e ≡ f if and only if e ≦ f and f ≦ e.

Proof. Remember that e ≦ f and f ≦ e are simply shorthand for e + f ≡ f
and f + e ≡ e, respectively. For the forward direction, note that if e ≡ f then
e+ f ≡ f + f ≡ f , and hence e ≦ f ; similarly, f ≦ e. For the converse, we can
derive that e ≡ f + e ≡ e+ f ≡ f .

We can now prove the desired equivalence.

Lemma 1.7. a · (b · a)∗ ≡ (a · b)∗ · a

Proof. It suffices to show that a ·(b · a)∗ ≦ (a · b)∗ ·a and (a · b)∗ ·a ≦ a ·(b · a)∗.
To show that a · (b · a)∗ ≦ (a · b)∗ · a, we can apply the last rule:

e+ f · g ≦ f =⇒ e · g∗ ≦ f

In our case, this means that we need to validate the premise:

a+ (a · b)∗ · a · b · a ≦ (a · b)∗ · a (1)

Let’s look at the program on the left-hand side. We can derive

a+ (a · b)∗ · a · b · a ≡ 1 · a+ (a · b)∗ · a · b · a (1 · e ≡ e)

≡ (1 + (a · b)∗ · a · b) · a (e · g + f · g ≡ (e+ f) · g)
≡ (a · b)∗ · a (1 + e∗ · e ≡ e)

Hence (1) follows by Lemma 1.6. The proof that (a · b)∗ · a ≦ a · (b · a)∗ is very
similar, and is left as homework.

6

7 Completeness

Reasoning using the axioms from Definition 1.4 is all well and good, but what
if you get stuck trying to show that e ≡ f to conclude that JeKσ = JfKσ for
your interpretation σ? In this situation, we can distinguish two cases. On the
one hand, JeKσ = JfKσ may hold specifically for σ, i.e., there exists some other
interpretation σ′ where JeKσ′ ̸= JfKσ′ . In that case, it is impossible to show
that e ≡ f — otherwise, we would contradict Lemma 1.5. On the other hand,
it might be the case that JeKσ′ = JfKσ′ does hold for all interpretations σ′, but
that the axioms you are using simply are not powerful enough.

But how do we know if we are in the latter case? Is it even possible to end
up in such a situation? The opposite (and equivalent) of this question is

Given that JeKσ = JfKσ for all σ, can we show that e ≡ f?

Such a property is known as completeness. We will spend the latter half of this
course trying to answer this question. Before we do, however, we can make our
lives a bit easier by getting rid of the quantification over interpretations. This
is done by introducing an alternative semantics of rational expressions.

8 The language model

We are about to introduce an alternative (and, as we shall see, equivalent)
semantics of rational expressions called the language model. Intuitively, the
language model can be seen as listing all possible ways in which the primitive
actions in the expression can be executed. Let’s develop some theory.

We write Σ∗ for the set of words over Σ, i.e., the set of finite sequences
a0a1 · · · an−1 where ai ∈ Σ. We write ϵ for the empty word. When w, x ∈ Σ∗,
we write wx for their concatenation, i.e., the letters of w followed by the letters
from x. A set of words (over Σ) is called a language (over Σ). Concatenation
can be lifted: when L and K are languages, we write L · K for the language
{wx : w ∈ L, x ∈ K}, and L∗ for the Kleene closure: {w0w1 · · ·wn−1 : wi ∈ L}.

We now have everything we need to define the language model.

Definition 1.8. We define J−KE : E→ 2Σ
∗
inductively, as follows:

J0KE = ∅ J1KE = {ϵ} JaKE = {a}

Je+ fKE = JeKE ∪ JfKE Je · fKE = JeKE · JfKE Je∗KE = JeK∗E

Every word in JeKE represents a sequence of actions that could be executed by
e: for instance, J1KE contains only the empty word, because the program 1 does
not execute any actions. Similarly, Je · fKE first lists a sequence of actions from
e, and then a sequence of actions from f , and likewise for the other operators.

As an example of the language semantics, consider the rational expression
a · (b · a)∗. Its language semantics is the set

{a, aba, ababa, . . . }

Next, we need to connect the language model to the relational model. Let’s
start by translating from the language model to the relational model.

7

Theorem 1.9. Let e, f ∈ E. if JeKE = JfKE, then JeKσ = JfKσ for all σ.

Proof sketch. The idea is as follows: given an interpretation σ : Σ → 2S×S , we
create σ̂ : 2Σ

∗ → 2S×S , such that J−Kσ = σ̂(J−KE). The claim follows, since

JeKσ = σ̂(JeKE) = σ̂(JfKE) = JfKσ

As it turns out, the definition of σ̂ is fairly simple:

σ̂(L) = {σ(a0) ◦ · · · ◦ σ(an−1) : a0 · · · an−1 ∈ L}

To verify the claimed equality, i.e., that JgKσ = σ̂(JgKE) for all g ∈ E, we
can proceed by induction on g. In the base, where g ∈ {0, 1} ∪ Σ, the claim is
straightforward. For the inductive steps, it suffices to verify that σ̂ is compatible
with the operators of language composition, that is to say:

σ̂(L ∪K) = σ̂(L) ∪ σ̂(K) σ̂(L ·K) = σ̂(L) ◦ σ̂(K) σ̂(L∗) = σ̂(L)
∗

These all turn out to hold; you will check them in the homework.

The converse property is shown as follows.

Theorem 1.10. Let e, f ∈ E. If JeKσ = JfKσ for all σ, then JeKE = JfKE.

Proof. Consider the map ♯ : 2Σ
∗ → 2Σ

∗×Σ∗
, given by

′♯(L) = {⟨w,wx⟩ : w ∈ Σ∗, x ∈ L}

One can show that ♯ is injective, i.e., that if ♯(L) = ♯(K), then L = K. After
all, if w ∈ L, then ⟨ϵ, w⟩ ∈ ♯(L) = ♯(K), hence w ∈ K, and vice versa. By
extension, this means that it suffices to show ♯(JeKE) = ♯(JfKE).

To this end, we choose the interpretation ⟨S, σ⟩, where

S = 2Σ
∗×Σ∗

σ(a) = ♯({a})

You will show (in the homework) that JgKσ = ♯(JgKE) for all g ∈ E, by induction
on g. Essentially, this comes down to verifying the following equalities:

♯(L ∪K) = ♯(L) ∪ ♯(K) ♯(L ·K) = ♯(L) ◦ ♯(K) ♯(L∗) = ♯(L)
∗

By the premise, we know that for our choice of σ, we have JeKσ = JfKσ, and
hence ♯(JeKE) = ♯(JfKE). By injectivity of ♯, we conclude that JeKE = JfKE.

From the above, we learn that the language model and the relational model
are equivalent, in the sense that two terms agree in the relational semantics
(under any interpretation) if and only if they agree on their language semantics.
This means that we can rephrase the question of completeness as follows:

Given that JeKE = JfKE, can we show that e ≡ f?

Moreover, it means that our axioms for ≡ are also sound for J−KE.

Corollary 1.11. Let e, f ∈ E. If e ≡ f , then JeKE = JfKE.

This concludes today’s lecture.

8

9 Homework

1. In the example, you’ve seen how you can use programs like guard and
validate to abort non-deterministic branches of program execution, and
create something like a while-do construct using the star operator.

You can use the same technique to encode a if -then-else construct, using
the non-deterministic choice operator + and suitably chosen programs
that abort execution under certain conditions.

Suppose you want to encode the following piece of code as a rational
expression, where M , L, R and y are valued as natural numbers:

if M2 ≤ y then

L←M ;
else

R←M ;

We can encode this snippet as lte · writeL+ gt · writeR, where

• lte and gt are programs that checkM2 ≤ y andM2 > y respectively,
and abort the program if this is not the case.

• writeL and writeR write M to L or to R, respectively.

Your task is two-fold:

(a) Give a semantic domain S that encodes the state of this four-variable
program. Hint: look back at how we encoded two-variable state.

(b) Give an interpretation σ to each primitive program, in S.

2. The snippet you saw above is actually part of a larger program, which
finds the integer square root of the input y by means of binary search:

L← 0;
R← y + 1;
while L < R− 1 do

M ← ⌊L+R
2 ⌋;

if M2 ≤ y then

L←M ;
else

R←M ;

(a) Come up with suitable primitive programs and their description to
encode this program. You may reuse the primitive programs from
the last exercise (no need to repeat their description).

(b) Give a rational expression to encode the program as a whole. You
may reuse the rational expression for the if -then-else construct.

(c) Give an interpretation σ to the new primitive programs that you
thought of, using the same semantic domain S as in the last exercise.

3. Recall that e ≦ f is shorthand for e + f ≡ f . Let’s examine some useful
properties of this shorthand. In the following, let e, f, g ∈ E.

(a) Show that e ≦ e always holds.

9

(b) Show that if e ≦ f and f ≦ g, then e ≦ g.

(c) Show that if e ≦ f , then e+ g ≦ f + g.

(d) Show that if e ≦ f , then e · g ≦ f · g.
(e) (Optional) Show that if e ≦ f , then e∗ ≦ f∗.

4. In Lemma 1.7, we showed that a · (b · a)∗ ≦ (a · b)∗ · a. Argue the other
direction, i.e., that (a · b)∗ ·a ≦ a · (b · a)∗. Hint: the structure of the proof
is very similar to the direction already shown above!

5. Let e, f ∈ E. Prove that (e+ f)
∗ ≡ e∗ · (f · e∗)∗.

6. Use the language semantics to prove that (a+ b)
∗ ̸≡ a∗·(b · a)∗. Note that,

since both languages are infinite, you will need to demonstrate (formally!)
that some word occurs in one language, but not another.

7. Prove the three equalities claimed at the end of Theorem 1.9. Next, for-
mally verify that, for all g ∈ E, it holds that JgKσ = σ̂(JgKE), by induction
on g, and using those three equalities.

8. Prove the three equalities claimed at the end of Theorem 1.10. Next,
formally verify that, for all g ∈ E and the choice of ⟨S, σ⟩ made there,
it holds that JgKσ = ♯(JgKE), by induction on g, and using those three
equalities.

10 Bibliographical notes

Just to make this abundantly clear: none of the material discussed in these notes
was first discovered by me. What follows is a brief and non-exhaustive set of
pointers to literature relevant to the ideas we looked at today.

A good argument making the case for comparing programs through algebraic
reasoning comes from Hoare and collaborators [HHH+87]. The operators of
Kleene Algebra were proposed by Kleene [Kle56]. Before that, Tarski and his
students studied the algebraic properties of the relational model we have seen,
using operators specific to relations as well [Tar41].

There exists a wild variety of axioms for Kleene Algebra; possibilities in-
clude the ones proposed by Salomaa [Sal66], Conway [Con71], Krob [Kro90],
Boffa [Bof90], and Kozen [Koz94]. The axioms presented in this lecture are due
to Kozen [Koz94]. The idea of encoding traditional program structures using
rational expressions can also be traced back to Kozen [Koz96].

The language model of Kleene algebra is as old as Kleene’s original pa-
per [Kle56]. In fact, the presentation in this course is a bit fictive — Kleene
proposed studying the languages deriving from rational expressions; the con-
nection to the relational model was made later on by Pratt [Pra80].

References

[Bof90] Maurice Boffa. Une remarque sur les systèmes complets d’identités
rationnelles. ITA, 24:419–428, 1990.

10

[Con71] John Horton Conway. Regular Algebra and Finite Machines. Chap-
man and Hall, Ltd., London, 1971.

[HHH+87] Tony Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe,
Jeff W. Sanders, Ib Holm Sørensen, J. Michael Spivey, and Bernard
Sufrin. Laws of programming. Commun. ACM, 30(8):672–686, 1987.
doi:10.1145/27651.27653.

[Kle56] Stephen C. Kleene. Representation of events in nerve nets and fi-
nite automata. In Claude E. Shannon and John McCarthy, editors,
Automata Studies, pages 3–41. Princeton University Press, 1956.

[Koz94] Dexter Kozen. A completeness theorem for Kleene algebras and
the algebra of regular events. Inf. Comput., 110(2):366–390, 1994.
doi:10.1006/inco.1994.1037.

[Koz96] Dexter Kozen. Kleene algebra with tests and commutativ-
ity conditions. In TACAS, pages 14–33, 1996. doi:10.1007/

3-540-61042-1_35.

[Kro90] Daniel Krob. A complete system of b-rational identities. In ICALP,
pages 60–73, 1990. doi:10.1007/BFb0032022.

[Pra80] Vaughan R. Pratt. Dynamic algebras and the nature of induction.
In STOC, pages 22–28, 1980. doi:10.1145/800141.804649.

[Sal66] Arto Salomaa. Two complete axiom systems for the algebra of reg-
ular events. J. ACM, 13(1):158–169, 1966. doi:10.1145/321312.

321326.

[Tar41] Alfred Tarski. On the calculus of relations. J. Symb. Log., 6(3):73–
89, 1941. doi:10.2307/2268577.

11

https://doi.org/10.1145/27651.27653
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1007/3-540-61042-1_35
https://doi.org/10.1007/3-540-61042-1_35
https://doi.org/10.1007/BFb0032022
https://doi.org/10.1145/800141.804649
https://doi.org/10.1145/321312.321326
https://doi.org/10.1145/321312.321326
https://doi.org/10.2307/2268577

	Housekeeping
	Framework
	Syntax
	An example program
	Semantics
	Reasoning
	Completeness
	The language model
	Homework
	Bibliographical notes

